# Derive non-linear $\sigma$ model from a theory of SU(2) matirx

+ 2 like - 0 dislike
110 views

It's said in Chapter VI.4 of A. Zee's book Quantum Field Theory in a Nutshell, a theory defined as $L(U(x))=\frac{f^2}{4}Tr(\partial_{\mu}U^{\dagger}\cdot\partial^{\mu}U)$, can be write in the form of a non-linear $\sigma$ model (up to some order)

$L=\frac{1}{2}(\partial\vec{\pi})^2+\frac{1}{2f^2}(\vec{\pi}\cdot\partial\vec{\pi})^2+...$,

where $U(x)=e^{\frac{i}{f}\vec{\pi}\cdot\vec{\tau}}$ is a matrix-valued field belonging to $SU(2)$, $\vec{\pi}$ is a three components vector, $\vec{\tau}$ are Pauli matrices. Maybe it's not hard but I meet some problems to derive it.

I suppose the first step is the Taylor expansion of $U$, $U=1+\frac{i}{f}\vec{\pi}\cdot\vec{\tau}-\frac{1}{2f^2}(\vec{\pi}\cdot\vec{\tau})^2+...$, and then $\partial^{\mu}U=\frac{i}{f}\partial^{\mu}(\vec{\pi}\cdot\vec{\tau})-\frac{1}{f^2}(\vec{\pi}\cdot\vec{\tau})\partial^{\mu}(\vec{\pi}\cdot\vec{\tau})$, then

$(\partial_{\mu}U^{\dagger})(\partial^{\mu}U)=\frac{1}{f^2}[\partial(\vec{\pi}\cdot\vec{\tau})]^2+\frac{1}{f^4}.[(\vec{\pi}\cdot\vec{\tau})\partial(\vec{\pi}\cdot\vec{\tau})]^2$.

Now there are my questions,

(1) Can I write $\partial^{\mu}(\vec{\pi}\cdot\vec{\tau})=\partial^{\mu}\vec{\pi}\cdot\vec{\tau}$? Then by $\vec{\tau}^2=1$, I get

$L=\frac{1}{4}(\partial\vec{\pi})^2+\frac{1}{4f^2}(\vec{\pi}\cdot\partial\vec{\pi})^2$,

which is almost correct but differ to the wished answer by a pre-factor $\frac{1}{2}$.

(2) Suppose $\partial^{\mu}(\vec{\pi}\cdot\vec{\tau})=\partial^{\mu}\vec{\pi}\cdot\vec{\tau}$ is correct, however, if I do $\partial^{\mu}U=\frac{i}{f}U\partial^{\mu}(\vec{\pi}\cdot\vec{\tau})=\frac{i}{f}U\partial^{\mu}\vec{\pi}\cdot\vec{\tau}$ first, it seems $\partial^{\mu}U^{\dagger}\cdot\partial^{\mu}U=|\frac{i}{f}U\partial^{\mu}\vec{\pi}\cdot\vec{\tau}|^2=\frac{1}{f^2}(\partial\vec{\pi})^2$, say, only the first term of the wished answer.

I probably made something wrong somewhere, can anyone hit me?

This post imported from StackExchange Physics at 2014-03-17 05:58 (UCT), posted by SE-user hongchaniyi
retagged Mar 17, 2014
I think you are somehow imagining a wrong question. There is nothing called "the" non-linear sigma model. You can define "a" non-linear sigma model by choosing whetever you like as the target Lie group in which your fields are valued in. Depending on what group you choose you get a different sigma-model. So you can always talk of the SU(2) NLSM where the fields are basically restricted to be on S^3. I would recommend that you see chapter 13, 14, 15 of this book to get a good picture of the issue, amazon.com/Quantum-Critical-Phenomena-International-Monographs/…

This post imported from StackExchange Physics at 2014-03-17 05:59 (UCT), posted by SE-user user6818
Hm, google chrome is trying to tell me that the revisions for this question are in "Greek". Huh?

This post imported from StackExchange Physics at 2014-03-17 05:59 (UCT), posted by SE-user Dimensio1n0

+ 1 like - 0 dislike

First of all, the Pauli matrices are not space-time dependent, so of course you can pass the derivative right through them. Second of all, $\operatorname{Tr} [\partial(\vec{\pi}\cdot\vec{\tau})]^2 = \operatorname{Tr}\partial_\mu \pi^i \partial^\mu \pi^j \tau^i \tau^j$

Now remember $\tau^i \tau^j = i \epsilon_{ijk} \tau^k + \delta^{ij} I_{2x2}$

So compute the trace and be done already!

(It pays to write things out in full if you aren't sure what you are doing)

This post imported from StackExchange Physics at 2014-03-17 05:59 (UCT), posted by SE-user lionelbrits
answered Nov 22, 2013 by (110 points)

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\varnothing$ysicsOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.