# Parametrization of $U(N)$ non-linear sigma model

+ 3 like - 0 dislike
133 views

The motivation of this question actually comes from this (really old) paper of Weinberg. He considers a theory of massless pions. They have a chiral $SU(2)_{L} \times SU(2)_{R}$ symmetry. The pions are like Goldstone bosns. It also conserves isospin and is constructed only from a "chiral-covariant derivative". After that, he just defines the covariant derivative of the pion field as \begin{equation*} D_{\mu} \pi = \frac{\partial_{\mu} \pi}{1+ \pi^{2}} \end{equation*} I have attempted to get this result as follows: I start with the Lagrangian of the non-linear sigma model $\mathcal{L} = f_{ij}\partial_{\mu}\phi^{i}\partial^{\mu}\phi^{j}$. The scalar fields $\phi^{i}$ form an $N$-component unit vector field $n^{i}(x)$. Then, if I impose the constraint $\sum_{i=1}^{N} n^{i \dagger} n^{i} = 1$. In spite of imposing the right constraints, I do not get the right sign in the the denominator. I get $1-\pi^2$. Where exactly am I going wrong? Weinberg himself says that this comes from a "suitable definition of the pion field" but, how do I parametrize this field so that I get the correct covariant derivative.

This post imported from StackExchange Physics at 2014-07-28 11:14 (UCT), posted by SE-user Debangshu

+ 2 like - 0 dislike

The Pion fields are the coordinates of the Stereographic projection:

$\phi_i = \frac{2 \pi_i}{1 + \pi^2} , i = 1, ..., n-1$

Where:

$\pi^2 = \sum_{i=1}^{N-1} \pi_i\pi_i$

And:

$\phi_n = \frac{-1 + \pi^2}{1 + \pi^2}$

As can be seen, this construction solves the constraint equation: $\sum_{a=1}^{N} \phi_a\phi_a= 1$.

Substituting in the Lagrangian, we get:

$\partial_{\mu} \phi_a\partial^{\mu} \phi_a = \frac{\partial_{\mu}\pi_i\partial^{\mu} \pi_i}{(1 + \pi^2)^2} = D_{\mu}\pi_i D^{\mu} \pi_i$

This post imported from StackExchange Physics at 2014-07-28 11:14 (UCT), posted by SE-user David Bar Moshe
answered May 13, 2013 by (4,355 points)

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOv$\varnothing$rflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.