# How to find the extra constants in quantization in action-angle coordinates?

+ 2 like - 0 dislike
201 views

Consider a harmonic oscillator
$$H = \frac{1}{2}(p^2 + x^2)$$

We make a canonical transformation to $I = (p^2 + x^2)/2$ and $\varphi = \arctan(p/x)$. It is then easy to see that $\{I,\varphi \} = 1$ and the Hamiltonian reduces to

$$H = I$$

We now canonically quantize this Hamiltonian and we obtain that $\hat{I} = -i\hbar \partial_\varphi$. The stationary Schrödinger equation then simply reads

$$-i\hbar \partial_\varphi \psi = E\psi$$

with the obvious solution $\sim e^{i E_n \varphi/\hbar}, \,E_n = hn$. However, this is different from the result $E_n = h(n+1/2)$ we get by quantizing in the usual phase-space coordinates $p,x$.

This is a general pattern - it is very easy to find energy levels and other quantum numbers in action-angle coordinates but this will introduce a shift in the results as compared to the initial coordinate system.

This is probably a consequence of the nonlinear $\sim p^n x^k$ nature of the transformation and will thus introduce $\mathcal{O}(\hbar)$ differences due to the operator ordering ambiguity of canonical quantisation.This makes me believe that these shifts will always be only shifts by a constant.

It is not clear to me

1.  Whether the observable consequences (such as $E_n - E_m = h (n-m)$) are truly always independent of the phase-space coordinate system in which we execute canonical quantisation.
2. How to compute the value of the shifts to the quantum numbers induced by the coordinate transform.

Does anyone know the answer to this?

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOve$\varnothing$flowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.