# Is there a relationship between quantization of coherent maps and the Kostant Souriau prequantum operator?

+ 3 like - 0 dislike
81 views

Suppose $(M,\omega)$ is a symplectic manifold with symplectic form $\omega$. Suppose at first that $\omega$ is exact, meaning that there is a globally defined ''symplectic potential'' $\theta$ with $d\theta=\omega$. We can consider the "prequantum Hilbert space" of square-integrable functions on $M$ (with respect to the Liouville volume measure). For each smooth function $f$ on $M$, we can define the Kostant–Souriau prequantum operator

$$\tilde{\Gamma}(f):=i\hbar\left( X_f -\frac{i}{\hbar}\theta(X_f)\right) +f$$

where $X_f$ is the Hamiltonian vector field associated to $f$.

When comparing geometric to coherent quantization, what is the exact relationship between the Souriau prequantum operator and the coherent quantization operator as defined in Theorem 3.12 of this paper? The theorem says that for $Z$ be a coherent space, $Q(Z)$ a  quantum space
of a coherent space $Z$, and  $A$ be a coherent map on $Z$.

(i) There is a unique linear map $\Gamma(A)\in Lin \,Q(Z)$ such that
$$\Gamma(A)|z>=|Az> \forall z\in Z.$$
(ii) For any adjoint map $A^*$ of $A$,
$$<z|\Gamma(A)=<A^*z| \, \forall z\in Z,$$
$$\Gamma(A)^*|_{Q(Z)}=\Gamma(A^*).$$
(iii) $\Gamma(A)$ can be extended to a linear map
$\Gamma(A):=\Gamma(A^*)^*\in Lin \, Q^x(Z)$, and this extension maps
$\overline{Q}(Z)$ into itself.

As I naively understand it, the coherent space $Z$ should correspond to the symplectic manifold $M$, the coherent states to the square integrable functions and the smooth functions on $M$ to the coherent maps. But I have some difficulties relating the Souriau prequantum operator $\tilde{\Gamma}(f)$ to the quantization operator $\Gamma(A)$. For example what would take the role of the Hamiltonian vector field and the potential $\theta$ in the coherent quantization picture?

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsO$\varnothing$erflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.