Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

145 submissions , 122 unreviewed
3,930 questions , 1,398 unanswered
4,873 answers , 20,701 comments
1,470 users with positive rep
502 active unimported users
More ...

What is the definition of a quantum integrable model?

+ 4 like - 0 dislike
72 views

What is the definition of a quantum integrable model?

To be specific: given a quantum Hamiltonian, what makes it integrable?

This post imported from StackExchange Physics at 2014-04-25 13:36 (UCT), posted by SE-user lagoa
asked Sep 9, 2013 in Theoretical Physics by lagoa (20 points) [ no revision ]

2 Answers

+ 6 like - 0 dislike

Quantum integrability basically means that the model is Bethe Ansatz solvable. This means that we can, using the Yang-Baxter relation, get a so-called "transfer matrix" which can be used to generate an infinite set of conserved quantities, including the Hamiltonian of the system, which, in turn, commute with the Hamiltonian. In other words, if we can find a transfer matrix which satisfies the Yang-Baxter relation and also generates the Hamiltonian of the model, then the model is integrable.

Please note that, oddly enough, a solvable system is not the same thing as an integrable system. For instance, the generalized quantum Rabi model is not integrable, but is solvable (see e.g. D. Braak, Integrability of the Rabi Model, Phys. Rev. Lett. 107 no. 10, 100401 (2011), arXiv:1103.2461).

A nice introduction to integrability and the algebraic Bethe Ansatz is this set of lectures by Faddeev in Algebraic aspects of the Bethe Ansatz (Int. J. Mod. Phys. A 10 no. 13 (1995) pp. 1845-1878, arXiv:hep-th/9404013)

This post imported from StackExchange Physics at 2014-04-25 13:36 (UCT), posted by SE-user Bubble
answered Sep 9, 2013 by Bubble (210 points) [ no revision ]
+ 0 like - 0 dislike

If we deal with quantum finite-dimensional systems without spin, the definition is this: if we have a system with $n$ degrees of freedom whose (quantum) Hamiltonian is given by an operator $H$, then this system is called integrable if there exist $n$ independent operators $K_i$ such that $K_1=H$ and $[K_i,K_j]=0$ for all $i,j=1,\dots,n$. All operators, of course, are assumed to be (formally) self-adjoint.

The matter of how one should interpret the word "independent" here is a bit tricky. Linear independence is not sufficient, and we should at least require the functional independence of classical limits of $K_j$ for all $j=1,\dots,n$.

For further details see e.g. Definition 6 in this paper by Miller, Post and Winternitz and references therein.

This post imported from StackExchange Physics at 2014-04-25 13:36 (UCT), posted by SE-user just-learning
answered Feb 21, 2014 by just-learning (95 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$y$\varnothing$icsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...