Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

145 submissions , 122 unreviewed
3,930 questions , 1,398 unanswered
4,873 answers , 20,701 comments
1,470 users with positive rep
502 active unimported users
More ...

BPS spectra and 3-manifold invariants

Originality
+ 2 - 0
Accuracy
+ 2 - 0
Score
4.18
196 views
Referee this paper: arXiv:1701.06567 by Sergei Gukov, Du Pei, Pavel Putrov, (show more)

Please use comments to point to previous work in this direction, and reviews to referee the accuracy of the paper. Feel free to edit this submission to summarise the paper (just click on edit, your summary will then appear under the horizontal line)

(Is this your paper?)


From the abstract: We provide a physical definition of new homological invariants of 3-manifolds (possibly, with knots) labeled by abelian flat connections. The physical system in question involves a 6d fivebrane theory on M3 times a 2-disk, whose Hilbert space of BPS states plays the role of a basic building block in categorification of various partition functions. The first partition function is labeled by a choice of boundary condition and provides a refinement of Chern-Simons (WRT) invariant. A linear combination of them in the unrefined limit gives the analytically continued WRT invariant of M3. The last two can be factorized into the product of half-indices. We show how this works explicitly for many examples, including Lens spaces, circle fibrations over Riemann surfaces, and plumbed 3-manifolds.

requested Feb 16 by Dilaton (4295 points)
summarized by Arnold Neumaier
paper authored Jan 23 to hep-th by  (no author on PO assigned yet) 
  • [ revision history ]
    edited Feb 17 by Arnold Neumaier

    1 Review

    + 3 like - 0 dislike

    I will provide a brief review focusing on the conjectures proposed by the authors without focusing on too many details.

    Firstly let me explain what (advanced) background is needed to understand this paper. One needs to be familiar with the whole technology of producing quantum field theories from M-theory. It is widely known that M5 branes have some QFT living on their worldvolume $M_6$. The famous class $S$-theories (originally due to Gaiotto) are a family of QFTs that live on a 4d manifold $X$ such that $M_6= X \times \Sigma_{g,n}$. The latter is a Riemann surface of genus $g$ with $n$ marked points (in this sense punctured points, for example $\mathbb{R}_n$ is the interval $(-\infty,0)\cup (0,+\infty)$). This gives the famous 4d-2d dualities between QFTs living on $X$ and (Liouville) CFTs living on $\Sigma_{g,n}$. One can re-interpret $M_6$ as $M_3 \times C$ (another 3d manifold involving circles). Then one gets the so-called 3d-3d correspondence. Then compactifying the 6d (2,0) theory on $C$ gives a QFT that goes by the name $T[C]$ living on $X$ whereas compactifying the 6d (2,0) theory on $X$ gives some other theory on $C$. As an example let me mention that the partition function of $T[C]$ on $S^2 \times S^1$ corresponds to the partition function of SL$_K(\mathbb{C})$ Chern-Simons theory at level $k=0$ on $M_3$. 

    Now, this paper's physics involves exactly such type of dualities. The paper starts of by explaining that in 3d manifolds we have an invariant that goes by the name $WRT$ and is given by 

    $$ \text{WRT} = \mathcal{Z}_{CS, k}^{\text{SU}(2)}(S^3) $$

    while one can define a generalized, in some sense, WRT invariant by replacing $S^3$ with any $M_3$. The conjectures of the authors, that I will now present, involve some sort of categorification of these invariants. I am not sure if I can use the word refinement because it is more than this. 

    Conjecture 1 The (generalized) WRT invariant can be decomposed in homological blocks as following

    $$ \mathcal{Z}_{k}(M_3) \backsim \sum_{a,b \in T } e^{2\pi \, \text{lk}(a,b)} \, S_{ab} \hat{Z_b}(q) \Big|_{q\to e^{2\pi i/k}} $$

    where $T = \text{Tor} H_1(M_3,\mathbb{Z})/\mathbb{Z}_2$ and elements of it $a,b$ can be considered as cycles giving boundary conditions in the sense that these cycles are related to the boundary of M2 branes adjacent to an M5. The dual torsion homology gives abelian flat connections. Also, lk($a,b$) denotes the linking pairing on $M_3$ between two 1-cycles (we can think of it as some analogy of the intersection pairing in 4-manifolds and basically it is the number of intersection of $a$ with $b$ with multiplicity). $S$ is a matrix related to the $S$-duality of type IIB theory (since we can reduce the M-theory construction to IIB by a series of standard dualities). Finally, and most importantly, the homological blocks are the quantities $\hat{Z}_{b}(q)$ for a fixed boundary condition $b$.

    We can summarize that conjecture 1 is the claim of existence of a new 3-manifold invariant that  admits a $q$-series expansion with integer coefficients which is suitable for categorification. This guy, $\hat{Z}_b(q) \in \mathbb{Z}[[q]]$ is related to another new invariant that is predicted by physics. 

    Without quoting too many details, the whole brane construction and more specifically the internal symmetries we have, dictate the existence of a triply graded invariant, in $\mathbb{Z} \times \mathbb{Z} \times \text{Tor} H_1(M_3,\mathbb{Z})/\mathbb{Z}_2 $, of $M_3$ which looks like

    $$ H[M_3] = \oplus_{a \in T} H_a[M] = \oplus_{a \in T} \Big(  \oplus_{i,j} H_a^{i,j} \Big)  $$

    $i \in \mathbb{Z}+\Delta_a$, $j \in \mathbb{Z}$ (for this review it does not matter what $\Delta_a$ is)  and $a$ is a boundary condition of course. This invariant categories $\hat{Z}_a(q)$ because 

    $$ \hat{Z}_a(q) \backsim \sum_{i,j} q^{i}(-1)^j \text{dim} H_a^{i,j}$$

    (which suspiciously looks like an index). In the paper the authors describe the physics behind this invariant. Now let me turn to the second conjecture:

    Conjecture 2: For the homological block $ \hat{Z}_a(q)$ we saw just above the following holds

    $$ \mathcal{I}(q) = \sum_{a \in T} |\text{# of elements in Weyl group}| \,  \hat{Z}_a(q)  \hat{Z}_a(q^{-1}) $$

    where $ \mathcal{I}(q)$ is the superconformal index of the $T[M_3]$ theory. Therefore, indeed, the suspicion of the appearance of an index in the categorification of the WRT invariant is valid (if the conjectures hold of course) .

    The authors proceed with further refinements in the case where $M_3$ is a Seifert manifold (a specific type of circle fibration) leading to 4-graded invariants. Then, some discussion about the topologically twisted index (different to the superconformal index), generalization for U$(N)$ theories and the relationship of the above to open Gromov invariants of the CY3 $T^*M_3$ are discussed. Examples follow and these results are applied to quite technical illustrations.

    I would say that this paper is fairly technical and it has some new impressive results for people interested in invariants of manifolds. It is certainly worth going through the introduction and section 2 (which is where the main message is delivered). Most of the examples are quite non-trivial and very soon become very technical. I have not been able to go through all of them. Still, this paper is well written, the references within well placed and quoted when needed. This is an impressive study as far as my opinion is concerned with fairly convincing arguments. Related works are 1602.05302 and 1608.02961while for some understanding of the 3d-3d correspondence I recommend the book New Dualities of Supersymmetric Gauge Theories chapter "3d Superconformal Theories form Three-Manifolds" which can also be found on arXiv.

    reviewed Feb 17 by conformal_gk (3,535 points) [ revision history ]

    what is $n$ in your example of $R_n$? -- the  explanation is independent of $n$!

    I just wanted to show what a puncture actually is so it is a typo, I should had written $\mathbb{R}_1$. 

    Your Review:

    Please use reviews only to (at least partly) review submissions. To comment, discuss, or ask for clarification, leave a comment instead.
    To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
    Please consult the FAQ for as to how to format your post.
    This is the review box; if you want to write a comment instead, please use the 'add comment' button.
    Live preview (may slow down editor)   Preview
    Your name to display (optional):
    Privacy: Your email address will only be used for sending these notifications.
    Anti-spam verification:
    If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
    p$\hbar$ysicsOverfl$\varnothing$w
    Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
    To avoid this verification in future, please log in or register.




    user contributions licensed under cc by-sa 3.0 with attribution required

    Your rights
    ...