• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,047 questions , 2,200 unanswered
5,345 answers , 22,709 comments
1,470 users with positive rep
816 active unimported users
More ...

  Curie-Weiss model of the quantum measurement process

+ 2 - 0
+ 1 - 0
Referee this paper: arXiv:cond-mat/0203460 by Armen E. Allahverdyan, Roger Balian, (show more)

Please use comments to point to previous work in this direction, and reviews to referee the accuracy of the paper. Feel free to edit this submission to summarise the paper (just click on edit, your summary will then appear under the horizontal line)

(Is this your paper?)

The authors claim to derive Born's rule in a very special but reasonable context.

requested May 23, 2017 by Prathyush (705 points)
summarized by Prathyush
paper authored Mar 21, 2002 to cond-mat by  (no author on PO assigned yet) 
  • [ revision history ]
    edited May 23, 2017 by Prathyush

    Dear @ArnoldNeumaier  I was hoping to get a response from you, as you have looked at this topic at great length. What do you think about this paper, first is it accurate and its general implications. There are other works by the same authors are titled "Understanding quantum measurement from the solution of dynamical models".

    @Prathyush: I had printed the paper and will review it in due time. Their work is serious and interesting (some of the best in this direction) but it is not so easy to give a valid review. For now, you may have a look at this posting and the subsequent discussion. See also here.

    @ArnoldNeumaier Thank you.

    For the passing by observer reading these comments :). I also posted this paper on PF asking for an evaluation. https://www.physicsforums.com/threads/evaluate-this-paper-on-derivation-of-the-born-rule.915579/

    1 Review

    + 4 like - 0 dislike

    If you are satisfied with the traditional foundations of quantum mechanics where a mysterious measurement process (taken as fundamental) magically assigns numbers (called measurement results) to a small quantum system following Born's rule, this paper is not for you. 

    If however, you want to know how it is possible that one can read off from a quantum device called a measurement apparatus numbers (called measurement results) that give information about the state of a small quantum system, and why these numbers follow (under appropriate conditions) Born's rule, then this article is a must read!!

    [paragraph added May 28, 2017:] It specifically addresses the question how, in a slightly idealized measurement process of the von Neumann kind (a binary measurement resulting in a state vector reduction to an eigenstate), the information about the state is transferred from the system to the measurement device, and how the system responds to the measurement. This process is usually skipped in foundational work, being assumed to happen instantaneously and without analysis. In their model, the dynamics of the measurement happens on several different time scales; the corresponding processes are referred to as (i) collapse, (ii) decoherence, and (iii) registration). The fastest, collapse phase is governed primarily by the macroscopic nature of the measurement device and hence has a characteristic time scaling like $N^{-1/2}$, where $N$ is the number of particles in the device. This phase is in principle reversible but the revivals are suppressed by the second phase, decoherence, on a characteristic time scale scaling like $N^{-1/4}$. Both terms vanish in the thermodynamic limit; thus the latter is responsible for the near-instantaneous nature of the measurement. Registration is the final and slowest phase; it takes time even in the thermodynamic limit and is responsible for the flow of information from the measured system to the measurement device through the restauration of equilibrium. The binary nature of the measurement is due to the fact that the measurement device is prepared in a metastable equilibrium state that decays after activation into one of two symmetrical stable equilibrium states.

    The paper was published as

    A.E. Allahverdyan, R. Balian and T.M. Nieuwenhuizen,
    Curie-Weiss model of the quantum measurement process,
    Europhysics Letters 61 (2003), 452-458.

    It is a short introduction (published 2003) to important work by  the authors culminating in the following 200 page treatise (published 2013) containing all the details:

    A.E. Allahverdyan, R. Balian and T.M. Nieuwenhuizen,
    Understanding quantum measurement from the solution of dynamical models,
    Physics Reports 525 (2013), 1-166.

    Other, related papers by the authors on the same topic include

    T.M. Nieuwenhuizen, M. Perarnau-Llobet and R. Balian,
    Lectures on dynamical models for quantum measurements,
    International Journal of Modern Physics B 28.21 (2014): 1430014.

    R. Balian, A.E. Allahverdyan and T.M. Nieuwenhuizen,
    Statistical theory of ideal quantum measurement processes,
    Manuscript (2015).

    A.E. Allahverdyan, R. Balian and T.M. Nieuwenhuizen,
    A sub-ensemble theory of ideal quantum measurement processes,
    Annals of Physics 376 (2017): 324-352.

    R. Balian, 
    The Theory of Measurement,
    pp. 251-278 in:
    The Quantum World. Philosophical Debates on Quantum Physics
    (B. d'Espagnat, H. Zwirn eds.) 
    Springer 2017.

    Real measurement processes must be described by complex multiparticle quantum processes whose natural description and analysis is in terms of quantum statistical mechanics. The art of understanding consists of finding model problems that capture all essential aspects of the measurement process while still being sufficiently simple that an analysis is mathematically feasible and physically illuminating.

    In the course of time quite a number of statistical mechanics models have been proposed and analyzed for this purpose, matching one or more of the many features that a model of a measurement process should faithfully represent. In [1], the authors start by listing six relevant such features (including Born's rule) and then outline how their model (a paramagnetic metastable system coupled to a phonon bath measuring a single spin) satisfies all of them. The main findings are plausible but given without proof. The system considered is claimed to be exactly solvable in the combined thermodynamic and Markovian limit;so everything should follow without any further approximation. For details the reader must turn to [2].

    Instead, the authors discuss in [1] the impact of the findings for their model problem on the microscopic interpretation of the measurement process in its various stages. Before decoherence has a chance to set in, the macroscopic size of the apparatus already induces a permanent decay of important off-diagonal entries of the marginal density matrix of the measured system. On the other hand, the measurement result becomes 
    visible on the measurement apparatus (via the registration in a ferromagnetic state) on a time scale much slower than the decoherence time. Thus decoherence plays a far less pronounced role in measurement than usually assumed.

    Of course any derivation rests on assumptions, and this work is no exception. Although the authors frame their contribution in a setting they call Bayesian, no use is made of specific Bayesian (subjective probability) arguments. Everything is equally valid in any setting where classical probabilities are subject to Kolmogorov's axioms and describe the behavior of averages and correlations of multiple (real or fictitious) realizations of random variables. 

    The machinery of statistical mechanics is assumed to be valid, without any discussion of its foundations. These foundations are traditionally phrased in terms of the standard foundations of quantum mechanics 
    (which assume Born's rule); so the subsequent derivation of Born's rule through the analysis of the model seems to be somewhat circular. However, as shown in Chapters 8 and 10 of my online book, statistical mechanics can be founded independent of Born's rule, taking  as basis only the notion of abstract expectation values $\bar A=\langle A\rangle :=\mbox{trace}\rho A$ for a system with a given density operator $\rho$, together with the uncertainty principle in the form 

    a Hermitian quantity $A$ whose uncertainty $\sigma_A:=\sqrt{\langle(A-\bar A)\rangle}$ is much less than $|\bar A|$ has this value within this uncertainty.

    This much weaker and unproblematic rule for the interpretation of the formalism of statistical mechanics makes neither a reference to the (complex) measurement process nor to a mysterious notion of collapse, and is the basis of my thermal interpretation of quantum mechanics.

    From this perspective, the models considered in [1-6] naturally complement the thermal interpretation of quantum mechanics by presenting measurement as a derived rather than fundamental theoretical concept.

    [paragraph added May 28, 2017:] Actually, the authors ultimately saw the need to justify the foundations they are using and discussed them extensively in [5]. Unlike many other foundational papers, they are quite specific about what they assume and why. In particular, as in my thermal interpretation, they renounce the traditional meaning of expectation values as a mean over observations (to emphasize this they call them q-expectation values) and they assert as their Interpretative Principle I the uncertainty principle mentioned above. (In some other respects they deviate from the thermal interpretation.)

    reviewed May 26, 2017 by Arnold Neumaier (15,787 points) [ revision history ]
    edited Jun 9, 2017 by Arnold Neumaier

    Your Review:

    Please use reviews only to (at least partly) review submissions. To comment, discuss, or ask for clarification, leave a comment instead.
    To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
    Please consult the FAQ for as to how to format your post.
    This is the review box; if you want to write a comment instead, please use the 'add comment' button.
    Live preview (may slow down editor)   Preview
    Your name to display (optional):
    Privacy: Your email address will only be used for sending these notifications.
    Anti-spam verification:
    If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
    Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
    Please complete the anti-spam verification

    user contributions licensed under cc by-sa 3.0 with attribution required

    Your rights