# General Relativity: Thin Shell (Israel/Darmois) & Differentiability

We will have to shut down our server temporarily for maintenance. The downtime will start at Wednesday, 27. January 2021 at 12:00 GMT and have a duration of about two hours. Please save your edits before this time. Thanks for your patience and your understanding.

+ 2 like - 0 dislike
208 views

This may be a naive question, but...

In applying the Israel/Darmois thin shell formalism, delta function matter distributions are considered acceptable.

How is the fact that this typically (necessarily?) leads to a curvature discontinuity - which suggests to me that differentiability of the manifold is lost - accommodated, given that differentiability lies at the heart of the concept of global hyperbolicity (before any considerations of causal structure) per Leray (1953) "Hyperbolic Differential Equations"?

How can one do physics on a manifold with such a thin shell if the geodesic equation (the essential hyperbolic differential equation) no longer applies (and thus the existence & uniqueness of geodesics is indeterminate)?

Isn't such a manifold singular?

EDIT: Is part of the answer that the geodesic equation can still be applied locally where the manifold is differentiable, so that as long as a geodesic does not intersect the thin shell it's OK?

NB Links to copies of the relevant Israel/Darmois papers would also be welcomed.

edited Oct 29, 2016

While there's no specific problem with this, the issue of the uniqueness of geodesics is more tricky to show, in particular it may not be trivial to prove that there exists convex normal neighbourhoods around such points (as far as I know, the usual proof assumes at least a $C^2$ metric for this to use the Picard–Lindelöf theorem). I haven't seen any proof for it in any lower differentiability class but I assume it might be possible to do using the general Carathéodory theorem for piecewise continuous functions.
 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsO$\varnothing$erflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.