# Fock Space Proof of $(g(x)\phi^4)_2$ Mass Gap?

+ 6 like - 0 dislike
119 views

Is there a proof that does not depend on Euclidean methods? Is this a proof? :

$V(g)$ can be written as $P+R$ where $P$ is non-negative and $R$ is $N$-bounded (and hence $(H_0+\lambda P)$-bounded). $H_0+\lambda P$ is essentially self-adjoint by this method. (These are short proofs depending on estimates on the kernels and $\phi < \sqrt N$).

By this theorem, $H_0+\lambda P$ has a gap for small $\lambda$. A gap is stable under the relatively bounded perturbation $\lambda R$, so $H_0+\lambda V$ has a gap for small $\lambda$.

This post imported from StackExchange MathOverflow at 2016-06-08 08:57 (UTC), posted by SE-user Keith McClary
 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOverflo$\varnothing$Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.