Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

145 submissions , 122 unreviewed
3,930 questions , 1,398 unanswered
4,852 answers , 20,624 comments
1,470 users with positive rep
501 active unimported users
More ...

Near horizon limit of near-extreamal black brane

+ 4 like - 0 dislike
113 views

It is known that the near horizon limit of a ($d+1$) dimensional extremal charged black hole (BH) is $AdS_2\times S^{d-1}$. I was looking at this paper by Faulkner et al. They consider a ($d+1$) dimensional extremal charged BH (rather black brane) which is asymptotically $AdS$. Now for zero temperature I can use their scaling limits (eqn. (20)) to obtain the $AdS_2\times R^{d-1}$.

Can someone tell me how to use the other scaling limit (eqn. (23)) to obtain the small temperature near horizon limit which is $AdS_2BH\times R^{d-1}$?

I understand this is a bit technical (home work type) question. Any hint or may-be-useful references are be much appreciated!


This post imported from StackExchange Physics at 2015-10-24 21:28 (UTC), posted by SE-user pinu

asked Oct 23, 2015 in Theoretical Physics by Physics Moron (280 points) [ revision history ]
edited Oct 24, 2015 by Dilaton

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOv$\varnothing$rflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...