The expectation values
$$ \langle p | \vec E(\vec x) | p\rangle $$
and similarly for $\vec B(\vec x)$ vanish for a simple reason: the state $|p\rangle$ is by definition translational symmetric (translation only changes the phase of the state, the overall normalization) so the expectation values of any field in this state has to be translationally symmetric, too (the phase cancels between the ket and the bra).
So if you expect to see classical waves in expectation values in such momentum eigenstates, you are unsurprisingly disappointed. Incidentally, the same thing holds for any other field including the Dirac field (in contrast with the OP's assertion). If you compute the expectation value of the Dirac field $\Psi(\vec x)$ in a one-particle momentum eigenstate with one electron, this expectation value also vanishes. In this Dirac case, it's much easier to prove so because the expectation values of all fermionic operators (to the first or another odd power) vanish because of the Grassmann grading.
The vanishing of the expectation values of fields (those that can have both signs, namely the linear functions of the "basic" fields connected with the given particle) would be true for any momentum eigenstates, even multiparticle states which are momentum eigenstates simply because the argument above holds universally. You may think that this vanishing is because the one-particle momentum eigenstate is some mixture of infinitesimal electromagnetic waves that are allowed to be in any "phase" and these phases therefore cancel.
However, the formal relationship between the classical fields and the one-particle states still holds if one is more careful. In particular, one may construct "coherent states" which are multiparticle states with an uncertain number of particles which are the closest approximations of a classical configuration. You may think of coherent states as the ground states of a harmonic oscillator (and a quantum field is an infinite-dimensional harmonic oscillator) which are shifted in the position directions and/or momentum directions, i.e. states
$$ |a\rangle = C_\alpha \cdot \exp(\alpha\cdot a^\dagger) |0\rangle $$
This expression may be Taylor-expanded to see the components with individual numbers of excitations, $N=0,1,2,3,\dots$ The $C_\alpha$ coefficient is just a normalization factor that doesn't affect physics of a single coherent state.
With a good choice of $\alpha$ for each value of the classical field (there are many independent $a^\dagger(k,\lambda)$ operators for a quantum field and each of them has its $\alpha(k,\lambda)$), such a coherent state may be constructed for any classical configuration. The expectation values of the classical fields $\vec B,\vec E$ in these coherent states will be what you want.
Now, with the coherent state toolkit, you may get a more detailed understanding of why the momentum eigenstates which are also eigenstates of the number of particles have vanishing eigenvalues. The coherent state is something like the wave function
$$ \exp(-(x-x_S)^2/2) $$
which is the Gaussian shifted to $x_S$ so $x_S$ is the expectation value of $x$ in it. Such a coherent state may be obtained by an exponential operator acting on the vacuum. The initial term in the Taylor-expansion is the vacuum itself; the next term is a one-particle state that knows about the structure of the coherent state – because the remaining terms in the Taylor expansions are just gotten from the same linear piece that acts many times, recall the $Y^k/k!$ form of the terms in the Taylor expansion of $\exp(Y)$: here, $Y$ is the only thing you need to know.
On the other hand, the expectation value of $x$ in the one-particle state is of course zero. It's because the wave function of a one-particle state is an odd function such as
$$ x\cdot \exp(-x^2/2) $$
whose probability density is symmetric (even) in $x$ so of course that the expectation value has to be zero. If you look at the structure of the coherent state and you imagine that the $\alpha$ coefficients are very small so that multiparticle states may be neglected for the sake of simplicity, you will realize that the nonzero expectation value of $x$ in the shifted state (the coherent state) boils down to some interference between the vacuum state and the one-particle state; it is not a property of the one-particle state itself! More generally, the nonzero expectation values of fields at particular points of the spacetime prove some interference between components of the state that have different numbers of the particle excitations in them.
The latter statement should be unsurprising from another viewpoint. If you consider something like the matrix element
$$ \langle n | a^\dagger | m \rangle $$
where the bra and ket vectors are eigenstates of a harmonic oscillator with some number of excitations, it's clear that it's nonzero only if $m=n\pm 1$. In particular, $m$ and $n$ cannot be equal. If you consider the expectation values of $a^\dagger$ in a particle-number eigenstate $|n\rangle$, it's obvious that the expectation value vanishes because $a$ and $a^\dagger$, and they're just a different way of writing linear combinations of $\vec B(\vec x)$ or $\vec E(\vec x)$, are operators that change the number of particle excitations by one or minus one (the same for all other fields including the Dirac fields).
So if you want to mimic a classical field or classical wave with nonzero expectation values of the fields, of course that you need to consider superpositions of states with different numbers of particle excitations! But it's still true that all these expectation values are already encoded in the one-particle states. Let me summarize it: the right states that mimic the classical configurations are $\exp(Y)|0\rangle$ where $Y$ is a linear combination of creation operators (you may add the annihilation ones but they won't make a difference, except for the overall normalization, because annihilation operators annihilate the vacuum). Such coherent exponential-shapes states have nonzero vevs of any classically allowed form that you may want. At the same moment, the exponential may be Taylor-expanded to $(1+Y+\dots)$ and the linear term $Y$ produces a one-particle state that is the ultimate "building block" of the classical configuration. But if you actually want to calculate the vevs of the fields, you can't drop the term $1$ or others, either: you need to include the contributions of the matrix elements between states with different numbers of the particle excitations.
This post imported from StackExchange Physics at 2015-04-22 11:16 (UTC), posted by SE-user Luboš Motl