# Cutoff and asymptotic series in QED

+ 0 like - 0 dislike
3885 views

...note that QED is valid only with some large but finite cutoff $\Lambda$.

What you call "valid" means "incomplete above $\Lambda$" rather than "obligatorily divergent". QED is $\Lambda$-divergent for another reason. I tired to explain it (again, on a simple toy model) here.

asked Apr 6, 2015 in Chat

You see, we are not so different although our motivations and approaches are different. In the last paper I just showed that a reasonably formulated theory is $\Lambda$-insensitive by construction and without fitting game involving bare constants. It is more physical and the toy model itself is quite realistic atomic example. No stretches.

One big difference is that I no longer announce my dreams as proposals, but publicize my little steps (if I make them public at all) as just being good solutions to small problems, and leave the speculative part to my readers and to my heart.

The stretch in your submission is your summarizing sentence, '' It is proposed to build QFT in the same manner.''

The refitting needed in traditional QED is not that bad, as you only need to refit two constants, the electron mass and the electron charge, to the renormalization conditions. Everything else can then be calculated from the fit. Thus one has a highly predictive theory.

Whatever you'll be doing, you also need to match these two data points. Your fit is slightly easier, since you simply take them as parameters - but as long as you ignore all its mathematical structure and replace it by a heuristic ansatz,  you'll have a lot of trouble to make your alternative theory be as predictive as the real QED. This is why I believe your approach to be doomed.

... as long as you ignore all its mathematical structure and replace it by a heuristic ansatz,  you'll have a lot of trouble to make your alternative theory be as predictive as the real QED. This is why I believe your approach to be doomed.

Those toy models (mechanical and atomic) are supposed to convince you in the opposite.

''convince you in the opposite''??

Electrodynamics is characterized by Lorentz invariance and gauge invariance, both in the classical and in the quantum domain. I see nothing in your toy models that give the slightest hint about how to combine your ideas with these two basic properties of electrodynamics. Only this would convince me, since this is the main difficulty to be overcome in reaching a better QED.

Note that experiment is in full agreement with both principles, and Dirac never renounced these!

Yes, I know this "effect" of toy models. But to a great extent it is a matter of confidence in the author. If S. Weinberg would propose such a toy model, you would take it more seriously than from me. If my examples make it impossible to take me seriously, then do impossible - search for a rational in my stuff despite lack of confidence in me.

Thus there is a 1-parameter family of accurate QED formulations, all corresponding to essentially the same renormalized coupling constants.

Yes, I know that. But we do not converge - each of us repeats his own phrases. What can we do to converge? Imagine, I have already learned QED and know it better than you. But I am not happy with it, just like P. Dirac. Because it is not a calculations when one fits the results rather than equations. For some reason you think I do not know QFT and its problems, probably because I am not discussing non interesting to me aspects of QFT.

Another thing is that you are completely happy with your understanding of QFT, so you do not see any need in reformulating it. All this makes you consider me as an annoying person fighting with shadows.

You and Ron are blaming me for the lack of relativistic and gauge invariance as if I were against these properties. It is very strange! I never said that these properties must be abandoned in a future theory. I said that calling them "guiding principles" is too much since they are simple properties and dictate nothing. You cannot imagine how many relativistic- and gauge-invariant expressions can be written down, but the main difficulty is in correctly encoding physics in the new equations. For example, the correct radiation reaction term in CED should be a radiation reaction term rather than a self-induction, self-acceleration, or an ersatz term.

+ 3 like - 0 dislike

Standard QED correctly encodes all finite time physics about electromagnetic processes in its renormalized equations, consistent with relativistic and gauge invariance; and almost all in the asymptotic domain, where the infrared problems are partially but not fully resolved.

So any proposal to reform QED must be measured against these achievements.

I am not blaming that your models are not relativistic and gauge invariance. But I am blaming that you seriously consider your toy models to be a big step towards a novel QED though neither you nor anyone else has the slightest idea how to make the step from the toy to the real thing. The path you propose is covered with unsurmountable barriers called relativistic and gauge invariance. But you don't care and happily repeat your proposals.

If QED were a mountain top in the sea of relativistic and gauge invariance, your toy model is like a small rocky hill on the other side of the shore, that you discovered how to climb. And, knowing that the famous climber Dirac thought that the current difficult path to the top of QED could not be the final answer, you shout, ''Hey, I finally found what Dirac was missing - the principle by means of which one can climb the QED top'', without having the slightest idea of how to cross the sea. Why should anyone take you seriously?

One must begin at the right side of the shore - assuming relativistic and gauge invariance -, and then see how to find from there a better path to the top. But this cannot be done without getting from the literature the best charts that already exist, and studying them in more detail than the others, so that one can discover the uncharted territory there that might hide a better way to the top. And yes, if one then has better equipment than the Elders, one might be more successful.

So if you say,

You cannot imagine how many relativistic- and gauge-invariant expressions can be written down, but the main difficulty is in correctly encoding physics in the new equations,

I fully agree, this is indeed the essential problem. But instead of suggesting a new way how to approach this problem (which would count as a step towards a novel QED) you throw away the first, essential half - you don't have QED unless you have these! You replace it by another problem where the essential difficulty is absent, solve the resulting easy problem, but claim you are close to a novel QED.

The essential difficulty is not to cope with short-distance physics or with the photon dressing. Here your toy models indeed propose techniques for handling these. Not the only known techniques by the way; for example, you might want to look at the work by Derezinski, who spent most of his academic career with various aspects of such problems.

The essential difficulty is rather to find a way to formulate a relativistic and gauge-invariant theory in which the short- and long-distance problems can be handled better than with the current, successful but somewhat awkward renormalization techniques. In approximations without relativity or gauge invariance, the problem has been already solved by people like Derezinski, with models far closer to real QED than your simple toy models.

Thus there is no shortage of methods for handling short- and long-distance problems, but only of methods for combining these with relativistic and gauge invariance. You contributed nothing to the latter, hence nothing towards a novel QED.

answered Apr 7, 2015 by (15,787 points)

... there is no shortage of methods for handling short- and long-distance problems ...

If you read my "Short-distance" paper, you will see that no methods are necessary since in a reasonably formulated theory there are no IR and UV problems.

in a reasonably formulated theory there are no IR and UV problems.

The essential problem is then to find a (covariant and gauge invariant) formulation of QED that is a reasonably formulated theory in this sense. You brought us no step closer to this goal.

The essential problem is then to find a (covariant and gauge invariant) formulation of QED that is a reasonably formulated theory in this sense. You brought us no step closer to this goal.

It is the next step. First we should make sure that not having those problems is possible in principle.

I am looking forward to you taking the next step. (Your first step doesn't count in my eyes, as one can always make difficulties disappear by simplifying the problem enough. Things start to get interesting only when you approach the real obstacle.)

Arnold, by now you should know for sure that the real obstacle for me is the lack of funding.

This is a poor excuse. My work in physics is also not funded. I do it in my spare time, besides a full-time job as a professor for Computational Mathematics that costs me more than 40 hours a week. Lack of funding still allows me to read the relevant literature, to learn what is needed to understand QED properly, and to be modest in my claims about the possible relevance of my work.

I am not you. If I say I need funding, it means I cannot do this work otherwise.

+ 1 like - 0 dislike

I don't want to converge, I want to reach the top! Your toys are not suitable for this, or I would have used them.

But if you want to converge with me, walk my ways and we'll reach the top together. If you trod a different path than I we'll never converge.

answered Apr 6, 2015 by (15,787 points)
edited Apr 7, 2015

:-)

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\varnothing$ysicsOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). Please complete the anti-spam verification