It is well known (Please, see for example Geometry of quantum states by Bengtsson and Życzkowski ) that the set of $N-$dimensional density matrices is stratified by the adjoint action of $U(N)$, where each stratum corresponds to orbits with a fixed type of degeneracy structure of the density matrix spectrum.
These orbits are flag manifolds, for example the orbit of density matrices of spectrum $(1, 0, 0, 0)$ (pure states) is $\mathbb{C}P^3$ and the orbit of density matrices of spectrum $(0.5, 0.5, 0, 0)$ (and also $(0.4, 0.4, 0.1, 0.1)$) is the complex Grassmannian $Gr(4,2, \mathbb{C})$.
These spaces - being coadjoint orbits - are known to be Kahler-Einstein.

An observation by Ingemar Bengtsson which was stated and proved in the following article, asserts that in the composite system of two $N-$ state quantum systems $\mathcal{H}^N \otimes \mathcal{H}^N$, whose orbit of pure states is $\mathbb{C}P^{N^2-1}$, the orbit of maximally entangled pure states is
$\mathbb{R}P^{N^2-1}$, which is a minimal Lagrangian submanifold.This observation was also mentioned in the first reference.

My questions:

Does this result generalize to non-pure states, for example is the orbit of maximally entangled states in
$Gr(N^2,2, \mathbb{C})$ (the orbit of density matrices of the type $(0.5, 0.5, 0, 0, . . .)$ in $\mathcal{H}^N \otimes \mathcal{H}^N$) isomorphic to $Gr(N^2,2, \mathbb{R})$.

Is there a physical interpretation of this result (a question left open by Bengtsson).

Update:

This is a clarification following Peter Shor's remark.

Among the biparticle pure states, the maximally entangled states, have the property that their partial trace with respect to one system is totally mixed (please, see the discussion following equation 22 in the second reference).
As a generalization I wish to know the local orbits of the states within a fixed biparticle density matrix orbit whose partial trace has the maximal Von Neumann entropy relative to all other states in the same biparticle orbit.
My motivation is that if the local orbits will happen to be the real flag Lagrangian submanifolds of the complex flag manifolds defining the biparticle state orbits (which is the case for the pure states), these manifolds have well known geometries and this can contribute to our understanding of mixed state entanglement.

This post has been migrated from (A51.SE)