First, the full paper is here:

http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=807BE383780883ACB4CAB8BD48E8C90B?doi=10.1.1.128.1806&rep=rep1&type=pdf

Second, the paper has 150 citations. See all this information at INSPIRE (updated SPIRES):

http://inspirebeta.net/record/278923?ln=en

Third, the text between 3.4 and 3.5 looks totally comprehensible. At that point, they are able to define $n\cdot S$ modulo 1, which is equivalent to defining the action $S$ modulo $1/n$. The goal is to define the action $S$ itself modulo 1; I suppose that their normalization of the path integral has to have $\exp(2\pi i S)$ with the atypical $2\pi$ factor. Yes, confirmed, it's equation 1.2.

If you shift the action by 1 - or $2\pi$ in the ordinary conventions - it doesn't change the integrand of the path integral; it doesn't change the physics. So quite generally, if one is able to say that the action $S$ is equal to $S_0+n$ (or $2\pi n$ normally) for some integer $n$, he knows everything about the physics of the action he needs; shifting it by an integer doesn't change anything. That's why, in fact, the action is often defined modulo 1 only (up to the addition of an integer multiple of 1).

So it's enough to know the "fractional part" of the action; the integer part is irrelevant. However, at the point of the equation 3.4, their uncertainty is larger than that: they only know the action modulo $1/n$. For example, if the action is $9.37$ modulo $1/2$, it means that the fractional part may be $0.37$ but it may also be $0.87$. These two values of $S$ would change the physics because the contribution of the configuration to the path integral changes the sign if one changes $S$ by $1/2$ (in normal conventions, by $\pi$).

If one only knows $S$ modulo $1/n$, and if he thinks it's $S_0$ - in this case, the $F\wedge F$ expression - it means that the real action is
$$ S = S_0 + K/n $$
and the integer $K$ has to be determined. Because the change of the action $S$ by an integer doesn't change physics, it doesn't matter if $K$ in the equation above is changed by a multiple of $n$. So the goal is to find the right $K$ to define the action - and $K$ is an unknown integer defined (or relevant) modulo $n$, i.e. up to the addition of an irrelevant and arbitrary multiple of $n$.

At some point, they find the right answer and it is
$$ K = -\langle \gamma^*(\omega),B\rangle $$
which removes the ambiguity of $S$ - the missing knowledge whether $S$ should be the original $S$ or higher or smaller by a particular multiple of $1/n$. If you don't understand the text above, then apologies, I have no way to find out why, so I can't give you a better answer unless you improve your question.

This post imported from StackExchange Physics at 2014-04-05 04:26 (UCT), posted by SE-user Luboš Motl