• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

203 submissions , 161 unreviewed
4,996 questions , 2,153 unanswered
5,340 answers , 22,632 comments
1,470 users with positive rep
813 active unimported users
More ...

  Deriving Callan-Gross from Parton Model

+ 2 like - 0 dislike

I want to derive the Callan-Gross relation from the parton model, not from the Rosenbluth and Mott cross sections, but I am having some problems obtaining the textbook result. I am following *M.D. Schwartz: Quantum Field Theory and the Standard Model* (pp.672, 675, 678).

Starting from the hard scattering coefficient obtained from the partonic scattering amplitude for $\gamma^\ast q_i\rightarrow q_i$ (eq. 32.32),
$$\hat{W}^{\mu\nu}(z,Q^2)=2\pi Q^2_i\delta(1-z)\left[A^{\mu\nu}+\frac{4z}{Q^2}B^{\mu\nu}\right],$$
where $A^{\mu\nu}:=-g^{\mu\nu}+\frac{q^\mu q^\nu}{Q^2}$, $B^{\mu\nu}:=\left(p^\mu+\frac{pq}{Q^2}q^\mu\right)\left(p^\nu+\frac{pq}{Q^2}q^\nu\right)$, and the convolution formula for the hardonic tensor $W^{\mu\nu}(x,Q^2)$ obtained from factorisation, we arrive at
such that $W_1(x,Q^2)=2\pi\sum_if_i(x)Q^2_i=\frac{Q^2}{4}W_2(x,Q^2)$.

Now, the textbook says that the result should be $W_1(x,Q^2)=\frac{Q^2}{4x^2}W_2(x,Q^2)$ (eq. 32.23, 32.24). Did I make a mistake somewhere in my calculations?

asked Feb 3, 2020 in Theoretical Physics by twening (70 points) [ no revision ]
recategorized Feb 4, 2020 by Dilaton

The integration is done correctly. Make in the integral the substitution $\xi=x/u$ to replace the integration variable $\xi$ by $u$, and $d\xi/\xi$ by $-du/u$, reverse the integration bounds to get rid of the minus sign (since $u<1$) and you'll get the same expression. Thus the problem must lie elsewhere.

What happens to the converted z from line 2 to line 3?
Why to you use Q² among W arguments ? Similarily, for the missing square of Q²/4z ( instead of Q²/4z² ), it depends on notations.and arguments of W(), since the proportionality is sufficient to conclude on a -1/2 spin.

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights