# Physical Meaning of $spin_{ \mathbb{C}}$ Structure

+ 2 like - 0 dislike
572 views

I have been studying the $spin_{ \mathbb{C}}$ structure. Is that true that the $U(1)$ part represents the $U(1)$ gauge field in physics? If this is indeed the physical meaning of the $U(1)$ part, is there any generalization for $SU(2)$-gauge theory?

It turned out that for a spinor field interacting with gauge field, the mathematical description is called "twisted bundle", which is introduced in section 12.6.2 in Nakahara. Now I believe that the $U(1)$ part of $spin_{ \mathbb{C}}$ is not the actual ordinary $U(1)$ gauge field. In classical field theory, the spinor field should be grassmann number-valued. Are there any books explaining more details about grassmann number-valued spinor bundles?

asked Mar 7, 2018
edited Mar 7, 2018

+ 2 like - 0 dislike

A possible answer is given at the following post

https://physicsoverflow.org/33037/physical-derivation-applications-mayer-integrality-theorem

In such post the $spin_{ \mathbb{C}}$ structure is generalized to In such post some physical examples are presented.

answered Mar 7, 2018 by (1,130 points)

Thank you.

+ 1 like - 0 dislike

The $U(1)$ part of $Spin^c$ is the electromagnetic field. The point is that for fermionic wavefunctions to be well-defined, around every contractible loop it has to be antiperiodic. Singular curves around which it's periodic instead can be removed by placing $\pi$ units of magnetic flux there.

answered Mar 8, 2018 by (1,925 points)
+ 1 like - 0 dislike

Please consider the following theorem According with such theorem, $w_{2}(X)$ is a topological obstruction or topological accident or topological wound  which does not permit the existence of spinors on $X$.  In order to heal the topological wound of $X$ a magnetic monopole  is introduced via the cohomological flux  $c$.  With such therapy, now $X$ admits the existence of spinors.·

answered Mar 9, 2018 by (1,130 points)

Thank you very much for your answer. Could you also leave a comment about the grassmann number nature of classical spinors? How to construct a grassmann number-valued spinor bundle?

Please tell me the reference textbook of the theorem.

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOve$\varnothing$flowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.