# Invariant connections on principal bundles and space-time symmetries of the Yang-Mills fields

+ 2 like - 0 dislike
1020 views

I am trying to understand the Wang's theorem (http://projecteuclid.org/download/pdf_1/euclid.nmj/1118800027) about invariant connections from the physical point of view. According with Kobayashi-Nomizu, the Wang's theorem reads:

THEOREM 11.5. If a connected Lie group $K$ is a fibre-transitive automorphism
group of a principal bundle $P( M, G)$  and if $J$ is the isotropy subgroup of
$K$ at $x_0 =\pi(u_0)$, then there is a  $1 : 1$ correspondence between the set of $K$-invariant
connections in the principal bundle $P$ and the set of linear mappings  $\Lambda: \kappa \rightarrow g$
which satisfies

$\Lambda(X) = \lambda(X)$  for $X\in \chi$

$\Lambda(ad (j)(X)) = ad ( \lambda(j)) ( \Lambda(X))$ for  $j \in J$ and $X \in \kappa$

$\Lambda(X) = \omega_{u_0}(\hat{X})$ for $X \in \kappa$

where $\hat{X}$ is the vector field on $P$ induced by $X$, $\kappa$ is the Lie algebra of the Lie group $K$, $\chi$ is the Lie algebra of Lie group $J$ ,  $\lambda : J \rightarrow G$ is a homomorphism between Lie groups and   $\lambda : \chi \rightarrow g$ is the induced homomorphism between the corresponding Lie algebras.

My questions are:

1.  How to prove the Wang's theorem for physicists .

2.  How to apply the Wang's theorem to the study of the space-time symmetries of the Yang-Mills fields.

3.  Let me know papers with applications in physics of the  Wang's theorem.

edited Aug 7, 2015

+ 2 like - 0 dislike

1. Proving the Wang's theorem: (adapted from Kobayashi-Nomizu with step by step deductions)

First we prove that $\lambda : J \rightarrow G$ is a homomorphism.

Given that $j_1 \in J$, $j_2 \in J$ and $ju_0 = u_0 \lambda(j)$ we have

$$u_0 \lambda(j_1j_2) = (j_1j_2)u_0 = j_1(j_2u_0)=j_1(u_0 \lambda(j_2))=(j_1u_0)\lambda(j_2)= (u_0\lambda(j_1))\lambda(j_2)$$

$$u_0 \lambda(j_1j_2) = u_0(\lambda(j_1)\lambda(j_2))$$

$$\lambda(j_1j_2) = \lambda(j_1)\lambda(j_2)$$.

From $ju_0 = u_0 \lambda(j)$ and $eu_0=u_0e$ we deduce that $\lambda(e)=e$.

With $j_1 = j$ and $j_2 = j^{-1}$ we have that

$$\lambda(jj^{-1}) = \lambda(j)\lambda(j^{-1})$$

$$\lambda(e) = \lambda(j)\lambda(j^{-1})$$

$$e= \lambda(j)\lambda(j^{-1})$$

$$\lambda(j)^{-1}= \lambda(j^{-1})$$

We next prove that $\omega(X^*)$ is independent of the choice of $k$ and $a$. Let

$$u_0 = k u a = k_1 u a_1$$

where $k \in K$, $k_1 \in K$, $a \in G$ and $a_1 \in G$ . Then we have that $k^{-1}u_0a^{-1} = u$ and $k_1^{-1}u_0a_1^{-1} = u$; it is to say

$$k^{-1}u_0a^{-1} = k_1^{-1}u_0a_1^{-1}$$

which is equivalent to

$$k_1k^{-1}u_0 = u_0a_1^{-1}a$$.

Comparing the last equation with $ju_0 = u_0 \lambda (j)$ where $j \in J$ we deduce that

$$j = k_1k^{-1} \in J$$

and

$$\lambda (j) = a_1^{-1}a$$.

From these last equations we obtain that

$$k_1 = jk$$

and

$$a_1=a\lambda (j)^{-1}=a \lambda (j^{-1})$$.

Using all these we have

$$k_1 \circ R_{a_1}X^* = (jk) \circ R_{a \lambda (j^{-1}) }X^*$$

$$k_1 \circ R_{a_1}X^* = (jk) \circ R_{ \lambda (j^{-1}) }( R_{a}X^* )$$

$$k_1 \circ R_{a_1}X^* = j \circ R_{ \lambda (j^{-1}) }( k \circ R_{a}X^* )$$

$$k_1 \circ R_{a_1}X^* = j \circ R_{ \lambda (j^{-1}) }( \hat{X}_{u_0} +A_{u_0}^*)$$

$$k_1 \circ R_{a_1}X^* = j \circ R_{ \lambda (j^{-1}) }( \hat{X}_{u_0} )+j \circ R_{ \lambda (j^{-1}) }(A_{u_0}^*)$$

$$k_1 \circ R_{a_1}X^* = j ( \hat{X}_{u_0 \lambda (j^{-1})} )+j \circ R_{ \lambda (j^{-1}) }(A_{u_0}^*)$$

$$k_1 \circ R_{a_1}X^* = j ( \hat{X}_{u_0 \lambda (j^{-1})} )+ R_{ \lambda (j^{-1}) }(jA_{u_0}^*)$$

$$k_1 \circ R_{a_1}X^* = j ( \hat{X}_{u_0 \lambda (j^{-1})} )+ R_{ \lambda (j^{-1}) }(A_{ju_0}^*)$$

$$k_1 \circ R_{a_1}X^* = j ( \hat{X}_{u_0 \lambda (j^{-1})} )+ R_{ \lambda (j^{-1}) }(A_{u_0\lambda(j)}^*)$$

$$k_1 \circ R_{a_1}X^* = \hat{Z}_{u_0}+ C^*_{u_0}$$

where

$$Z = ad(j)(X)$$

and

$$C = ad(\lambda (j) )(A)$$

Then we have that

$$ad(a_1)(\Lambda (Z) +C)= ad(a_1)[\Lambda (ad(j)(X) )+ad(\lambda (j) )(A)]$$

$$ad(a_1)(\Lambda (Z) +C)= ad(a_1)[ad(\lambda (j))(\Lambda(X))+ad(\lambda (j) )(A)]$$

$$ad(a_1)(\Lambda (Z) +C)= ad(a_1)[ad(\lambda (j))(\Lambda(X)+A)]$$

$$ad(a_1)(\Lambda (Z) +C)= ad(a_1)[ad(a_1^{-1}a)(\Lambda(X)+A)]$$

$$ad(a_1)(\Lambda (Z) +C)= a_1[ad(a_1^{-1}a)(\Lambda(X)+A)]a_1^{-1}$$

$$ad(a_1)(\Lambda (Z) +C)= a_1[(a_1^{-1}a)(\Lambda(X)+A)(a_1^{-1}a)^{-1}]a_1^{-1}$$

$$ad(a_1)(\Lambda (Z) +C)= a_1[(a_1^{-1}a)(\Lambda(X)+A)(a^{-1}a_1)]a_1^{-1}$$

$$ad(a_1)(\Lambda (Z) +C)= (a_1a_1^{-1})[a(\Lambda(X)+A)a^{-1}](a_1a_1^{-1} )$$

$$ad(a_1)(\Lambda (Z) +C)= e[a(\Lambda(X)+A)a^{-1}]e$$

$$ad(a_1)(\Lambda (Z) +C)= a(\Lambda(X)+A)a^{-1}$$

$$ad(a_1)(\Lambda (Z) +C)= ad(a)(\Lambda(X)+A)$$.

This proves  that $\omega(X^*)$ depends only on $X^*$.

Now, we prove that $\omega$ is a connection one-form. Let  $X^* \in T_u(P)$ and
$u_0 = kua$ . Let $b$ be an arbitrary element of the structure group $G$.  We write

$$Y^* = R_b X^* \in T_v(P)$$

where $v = ub$ and for hence $u_0 =kua=ku(bb^{-1})a=k(ub)(b^{-1}a)= kv(b^{-1}a)$.  Then we have that

$$k \circ R_{b^{-1}a}Y^* = k \circ R_{b^{-1}a}R_b X^* = k \circ R_{bb^{-1}a}X^* = k \circ R_aX^* =(\hat{X}_{u_0}+A^*_{u_0})$$.

From $k \circ R_aX^* =\hat{X}_{u_0}+A^*_{u_0}$ we write the definition of $\omega$ as

$$\omega(X^*)=ad(a)(\Lambda (X) +A)$$

then from $k \circ R_{b^{-1}a}Y^* =\hat{X}_{u_0}+A^*_{u_0}$ we write that

$$\omega(Y^*)=ad(b^{-1}a)(\Lambda (X) +A).$$

Then we have

$$\omega(R_b X^*)=\omega(Y^*)=ad(b^{-1}a)(\Lambda (X) +A)$$

$$\omega(R_b X^*)= (b^{-1}a)(\Lambda (X) +A)(b^{-1}a)^{-1}$$

$$\omega(R_b X^*)= (b^{-1}a)(\Lambda (X) +A)(a^{-1}b)$$

$$\omega(R_b X^*)= b^{-1}[a(\Lambda (X) +A)a^{-1}]b$$

$$\omega(R_b X^*)= ad(b^{-1})[a(\Lambda (X) +A)a^{-1}]$$

$$\omega(R_b X^*)= ad(b^{-1})[ad(a)(\Lambda (X) +A)]$$

$$\omega(R_b X^*)= ad(b^{-1})\omega(X^*).$$

Finally, we prove that $\omega$  is invariant by $K$. Let  $X^* \in T_u(P)$ and $k_1$  be an arbitrary element of $K$. Then $k_1X^* \in T_{k_1u},(P)$ and we have that

$$\omega(k_1 X^*)=k_1(ad(a)(\Lambda (X) +A))$$

$$\omega(k_1 X^*)=ad(ak_1)(k_1(\Lambda (X) )+k_1(A))$$

$$\omega(k_1 X^*)=ad(ak_1)[ad(k_1^{-1})(\Lambda (X) )+ad(k_1^{-1})(A)]$$

$$\omega(k_1 X^*)=ad(ak_1)[ad(k_1^{-1})(\Lambda (X) )]+ad(ak_1)[ad(k_1^{-1})(A)]$$

$$\omega(k_1 X^*)=(ak_1)[ad(k_1^{-1})(\Lambda (X) )](ak_1)^{-1}+(ak_1)[ad(k_1^{-1})(A)](ak_1)^{-1}$$

$$\omega(k_1 X^*)=(ak_1)[k_1^{-1}\Lambda (X) k_1](k_1^{-1}a^{-1})+(ak_1)[k_1^{-1}Ak_1](k_1^{-1}a^{-1})$$

$$\omega(k_1 X^*)=a(k_1k_1^{-1})\Lambda (X)(k_1k_1^{-1})a^{-1}+a(k_1k_1^{-1})A(k_1k_1^{-1})a^{-1}$$

$$\omega(k_1 X^*)=ae\Lambda (X)ea^{-1}+aeAea^{-1}$$

$$\omega(k_1 X^*)=a\Lambda (X)a^{-1}+aAa^{-1}$$

$$\omega(k_1 X^*)=a[\Lambda (X)+A]a^{-1}$$

$$\omega(k_1 X^*)=ad(a)(\Lambda (X)+A)$$

$$\omega(k_1 X^*)=\omega( X^*)$$

answered Aug 7, 2015 by (1,130 points)
edited Aug 14, 2015 by juancho
+ 2 like - 0 dislike

2.  Example of invariant connection.

Wang`s theorem can be applied to construct spherically symmetric  $SU(2)$ connections over $S^2$.  In this case the isotropy subgroup is $U(1)$.  We start searching for a flat $SU(2)$ connection of the form

$$\hat{A} = \hat{\tau}_1d \theta+(f(\theta) \hat{\tau}_2+g(\theta) \hat{\tau}_3)d\phi$$

where $\hat{\tau}_k = \frac{\hat{\sigma_k}}{2i}$ being $\hat{\sigma_k}$ the Pauli matrices.  The matrices $\hat{\tau}_k$ are the generators of the Lie algebra $su(2)$ with the commutation relations

$$[\hat{\tau}_1,\hat{\tau}_2] = \hat{\tau}_3$$

$$[\hat{\tau}_1,\hat{\tau}_3] = -\hat{\tau}_2$$

and being $\hat{\tau}_3$ is the generator of the Lie algebra $u(1)$.

The corresponding Yang-Mills field is given by

$$\hat{F} = d\hat{A} + \frac{1}{2}[\hat{A},\hat{A}] =d\hat{A} + \hat{A} \wedge \hat{A}$$

Then we have

$$\hat{F} = d[ \hat{\tau}_1d \theta+(f(\theta) \hat{\tau}_2+g(\theta) \hat{\tau}_3)d\phi] +$$

$$[ \hat{\tau}_1d \theta+(f(\theta) \hat{\tau}_2+g(\theta) \hat{\tau}_3)d\phi] \wedge [ \hat{\tau}_1d \theta+(f(\theta) \hat{\tau}_2+g(\theta) \hat{\tau}_3)d\phi]$$

which is expanded as

$$\hat{F} = \frac{df}{d\theta }\hat{\tau}_2 d\theta \wedge d\phi +\frac{dg}{d\theta }\hat{\tau}_3 d\theta \wedge d\phi +f\hat{\tau}_1 \hat{\tau}_2 d\theta \wedge d\phi+g\hat{\tau}_1 \hat{\tau}_3 d\theta \wedge d\phi+$$

$$f\hat{\tau}_2 \hat{\tau}_1 d\phi \wedge d\theta +g\hat{\tau}_3 \hat{\tau}_1 d\phi \wedge d\theta$$

Then we have

$$\hat{F} = \frac{df}{d\theta }\hat{\tau}_2 d\theta \wedge d\phi +\frac{dg}{d\theta }\hat{\tau}_3 d\theta \wedge d\phi +f\hat{\tau}_1 \hat{\tau}_2 d\theta \wedge d\phi+g\hat{\tau}_1 \hat{\tau}_3 d\theta \wedge d\phi-$$

$$f\hat{\tau}_2 \hat{\tau}_1 d\theta \wedge d\phi -g\hat{\tau}_3 \hat{\tau}_1 d\theta \wedge d\phi$$

which can be rewritten as

$$\hat{F}= [ \frac{df}{d\theta }\hat{\tau}_2 +\frac{dg}{d\theta }\hat{\tau}_3 +f(\hat{\tau}_1 \hat{\tau}_2-\hat{\tau}_1 \hat{\tau}_2) +g(\hat{\tau}_1 \hat{\tau}_3 -\hat{\tau}_3 \hat{\tau}_1)]d\theta \wedge d\phi$$

it is to say

$$\hat{F}= ( \frac{df}{d\theta }\hat{\tau}_2 +\frac{dg}{d\theta }\hat{\tau}_3 +f[\hat{\tau}_1 ,\hat{\tau}_2] +g[\hat{\tau}_1, \hat{\tau}_3] )d\theta \wedge d\phi$$

Using the commutation relations we obtain

$$\hat{F}= ( \frac{df}{d\theta }\hat{\tau}_2 +\frac{dg}{d\theta }\hat{\tau}_3 +f\hat{\tau}_3 -g\hat{\tau}_2 )d\theta \wedge d\phi$$

which is rewritten as

$$\hat{F}= [(\frac{df}{d\theta }-g)\hat{\tau}_2 +(\frac{dg}{d\theta }+f)\hat{\tau}_3 ]d\theta \wedge d\phi$$

The connection is flat when $\hat{F} = 0$ and then

$$0= [(\frac{df}{d\theta }-g)\hat{\tau}_2 +(\frac{dg}{d\theta }+f)\hat{\tau}_3 ]d\theta \wedge d\phi$$

which is equivalent to

$$\frac{df}{d\theta }-g = 0$$

$$\frac{dg}{d\theta }+f =0$$

The solution of such system of coupled linear ordinary differential equations  is

$$f \left( \theta \right) =C_{{1}}\sin \left( \theta \right) +C_{{2}} \cos \left( \theta \right)$$

$$g \left( \theta \right) =C_{{1}}\cos \left( \theta \right) -C_{{2}} \sin \left( \theta \right)$$

Then the invariant flat connection takes the form

$$\hat{A} = \hat{\tau}_1d \theta+[(C_{{1}}\sin \left( \theta \right) +C_{{2}} \cos \left( \theta \right)) \hat{\tau}_2+(C_{{1}}\cos \left( \theta \right) -C_{{2}} \sin \left( \theta \right)) \hat{\tau}_3]d\phi$$

Now we construct a non-flat invariant connection of the form

$$\hat{A} = \hat{\Lambda}_1d \theta+(f(\theta) \hat{\Lambda}_2+g(\theta) \hat{\Lambda}_3)d\phi$$

where the Wang map $\Lambda : su(2) \rightarrow su(2)$ is determined by $\hat{\Lambda}_k = \Lambda(\hat{\tau}_k)$ with

$$[\hat{\Lambda}_1,\hat{\Lambda}_3] = -\hat{\Lambda}_2$$

Then the corresponding Yang-Mills field takes the form

$$\hat{F}= ( \frac{df}{d\theta }\hat{\Lambda}_2 +\frac{dg}{d\theta }\hat{\Lambda}_3 +f[\hat{\Lambda}_1 ,\hat{\Lambda}_2] +g[\hat{\Lambda}_1, \hat{\Lambda}_3] )d\theta \wedge d\phi$$

which is reduced to

$$\hat{F}= ( \frac{df}{d\theta }\hat{\Lambda}_2 +\frac{dg}{d\theta }\hat{\Lambda}_3 +f[\hat{\Lambda}_1 ,\hat{\Lambda}_2] -g\hat{\Lambda}_2)d\theta \wedge d\phi$$

Now using that $\frac{df}{d\theta }=g$ and $\frac{dg}{d\theta }=-f$, the Yang-Mills field acquires the form

$$\hat{F}= ( g\hat{\Lambda}_2 -f\hat{\Lambda}_3 +f[\hat{\Lambda}_1 ,\hat{\Lambda}_2] -g\hat{\Lambda}_2)d\theta \wedge d\phi$$

which is reduced to

$$\hat{F}= ( [\hat{\Lambda}_1 ,\hat{\Lambda}_2] - \hat{\Lambda}_3)fd\theta \wedge d\phi$$

Finally using that $f \left( \theta \right) =C_{{1}}\sin \left( \theta \right) +C_{{2}} \cos \left( \theta \right)$ we obtain

$$\hat{F}= ( [\hat{\Lambda}_1 ,\hat{\Lambda}_2] - \hat{\Lambda}_3)(C_{{1}}\sin \left( \theta \right) +C_{{2}} \cos \left( \theta \right))d\theta \wedge d\phi$$

From this last equation we observe that when the Wang map $\Lambda : su(2) \rightarrow su(2)$ is a Lie algebra homomorphism, it is to say, when $[\hat{\Lambda}_1 ,\hat{\Lambda}_2] =\hat{\Lambda}_3$; then $\hat{F}=0$ and for hence the invariant connection is flat.

answered Aug 10, 2015 by (1,130 points)
edited Aug 10, 2015 by juancho

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOverf$\varnothing$owThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). Please complete the anti-spam verification