# Theorem of QFT as an operator-valued function theory

+ 3 like - 0 dislike
165 views

From Axioms of relativistic quantum field theory, I find the following theorem :

We conclude this section with the following result of Wightman which demonstrates that in QFT it is necessary to consider operator-valued distributions instead of operator-valued mappings :

Proposition 8.15. Let $\Phi$ be a field in a Wightman QFT which can be realized as a map $\Phi : M \to \mathcal O$ and where $\Phi^*$ belongs to the fields. Moreover, assume that $\Omega$ is the only translation-invariant vector (up to scalars). Then $\Phi(x) = c \Omega$ is the constant operator for a suitable constant $c \in \Bbb C$.

First the notation is a bit confusing since $\Phi(x)$ is an operator and $c \Omega$ is a Hilbert vector. I suspect it is supposed to mean that every field operator just maps every vector to the vacuum, but it is not really explicit.

I tried finding the original Wightman theorem, but this does not include any bibliographical reference for this statement. The only Wightman book referenced is "PCT, Spin and Statistics, and All That", which doesn't seem to include it.

This is disregarding any concerns for the canonical commutation relation, as the Wightman axioms do not include them as a requirement.

What is the theorem exactly and how does one go about to prove it?

This post imported from StackExchange Physics at 2017-10-11 16:33 (UTC), posted by SE-user Slereah
it looks like a typo, IIRC, it should read $\Phi(x)\Omega=c\Omega$.

This post imported from StackExchange Physics at 2017-10-11 16:33 (UTC), posted by SE-user AccidentalFourierTransform
Would that make every operator-valued function theory useless? I'm not quite sure where the problem lies.

This post imported from StackExchange Physics at 2017-10-11 16:33 (UTC), posted by SE-user Slereah
that's the point: if $\Phi(x)$ is an operator valued function, then it is trivial. Therefore, we conclude that we want it to be an operator valued distribution. This bypasses the theorem and we get a useful theory

This post imported from StackExchange Physics at 2017-10-11 16:33 (UTC), posted by SE-user AccidentalFourierTransform

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysic$\varnothing$OverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.