# Determinant of the Dirac operator and discrete eigenvalues

+ 2 like - 0 dislike
2020 views

Consider the determinant of the euclidean form of the Dirac operator:
$$\text{det}(iD), \quad iD = i\gamma_{\mu}(\partial_{\mu}+A_{\mu})$$

It is an elliptic operator, so has a discrete spectrum on compact manifolds. The euclidean manifold  $R^{4}$ is not a compact manifold. However, people typically writes
$$\text{det}(iD) = \prod_{i = 1}^{\infty}\lambda_{i},$$

where $\lambda_{i}$ defines the $i$th eigenvalue:
$$iD\psi_{i} = \lambda_{i}\psi_{i}$$

Why can they do this?

asked Jan 12, 2017

+ 2 like - 0 dislike

If it is done in the framework of QFT, it is usually quite a formal expressions which then must be regularized in some way. The same story as for other determinants, traces, etc.

answered Jan 12, 2017 by (904 points)

@NAME_XXX It may be a kind of philosophic question. How do we know that the Path Integral is correct? Basically, it is because it works, and in all the experimentally verified situations it works correctly with enormous precision.

One not only replaces the manifold by a compact one but afterwards takes the infrared limit (infinite radius) that restores the original manifold. Under this limit the spectrum becomes continuous. of course this is not fully rigorous, and for massless fields unexpected things may happen....

@AndreyFeldman : but is there some reason which allows us to do that? All of the theory quantities must be projected on $S^{4}$ coordinates, and corresponding action must be invariant.

@ArnoldNeumaier : but is there some projection rule? I.e., if I want to construct the theory on $S^{4}$, I need to construct corresponding quantities defined on $S^{4}$.

@NAME_XXX In general, compactification of $\mathbb{R}^4$ to get $S^4$ is subtle -- it may give masses to massless fields, etc. If you are looking for some universal recipe, I'm afraid that it doesn't exist.

@NAME_XXX Usually one replaces a non-compact space by a compact one, which gives the former in the limit of infinite radius (say, $\mathbb{R}$ may be replaced by $S^1$), evaluates the index on this manifold, and then tends the radius to infinity.
 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ys$\varnothing$csOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). Please complete the anti-spam verification