Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,352 answers , 22,785 comments
1,470 users with positive rep
820 active unimported users
More ...

  Second-order term of the Fedosov quantised product

+ 6 like - 0 dislike
801 views

In Fedosov's version of quantisation of functions on a symplectic manifold, the product is given in terms of a symplectic connection. I have looked through Fedosov's book in deformation quantisation, and can't find the second order term for the product of two functions (which will involve the curvature), though I can find other expressions to second order. Am I being very unobservant (very likely), or if there really is no expression given there, is there another place where I can find it?

Application: The commutation relations of quantum mechanics arise in constructing quantum theory in classical geometry. Now suppose that we construct quantum mechanics in a geometry that is already noncommutative? In particular, if we have a first-order in some parameter noncommutative algebra of functions, can writing quantum mechanics give information on a second order deformation?

This post imported from StackExchange MathOverflow at 2016-06-12 10:20 (UTC), posted by SE-user Edwin Beggs
asked Oct 23, 2014 in Theoretical Physics by Edwin Beggs (30 points) [ no revision ]
retagged Jun 12, 2016

1 Answer

+ 2 like - 0 dislike

Indeed neither Fedosov's book nor his original paper (A Simple Geometrical Construction of Deformation Quantization, J. Diff. Geom. 40 (1993) 213-238) have an explicit formula for the second order term of his star product. To my knowledge, the first place where the recursive formulas for the terms in Fedosov's star product to all orders are written down explicitly is the paper by M. Bordemann and S. Waldmann, A Fedosov Star Product of the Wick Type for Kähler Manifolds, Lett. Math. Phys. 41 (1997) 243-253, arXiv:q-alg/9605012, particularly Theorems 3.1, 3.2 and 3.4 therein. Since these results are all due to Fedosov, only the proof of Theorem 3.4 is briefly sketched. However, if you want more details on how to get these formulae and are more or less comfortable reading German, I recommend the excellent book by S. Waldmann, Poisson-Geometrie und Deformationsquantisierung (Springer-Verlag, 2007), specially Section 6.4, pp. 444-473 and Exercise 6.12, pp. 484.

As for the applications you have in mind, I believe the answer is known if your noncommutative geometry comes from a strict deformation quantization à la Rieffel (e.g. the Moyal plane). In that case, one can use the action of translations to deform both the geometry and the (already noncommutative) C*-algebra of observables.

This post imported from StackExchange MathOverflow at 2016-06-12 10:20 (UTC), posted by SE-user Pedro Lauridsen Ribeiro
answered Jun 4, 2016 by Pedro Lauridsen Ribeiro (580 points) [ no revision ]
Thanks! That is a useful reference. My German may not be up to the second one...

This post imported from StackExchange MathOverflow at 2016-06-12 10:20 (UTC), posted by SE-user Edwin Beggs

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ys$\varnothing$csOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...