# Basic questions about the susceptibility of a first-order phase transition

+ 3 like - 0 dislike
967 views

I have two basic questions about first-order phase transitions:

1) is the susceptibility divergent at a first-order phase transition?

2) if yes, does it diverge in a universal way as in continuous phase transitions?

My understanding is as follows, and I would like to know if it is correct. The susceptibility diverges at a first phase transition, but in a non-universal way. To be concrete, let us consider a transition signaled by spontaneous symmetry breaking, where the system is symmetric above the transition and the symmetry is broken across the transition. If the transition is first order, right at the transition symmetry-broken states will be degenerate with the symmetric state. Then if an infinitesimal field that couples to the order parameter is exerted, a symmetry-broken state will have the lowest energy and the system will be pinned to that state. Therefore, the susceptibility diverges. However, at a first-order phase transition the correlation length does not diverge, so short distance details will be important and the divergence of the susceptibility will depend on them, thus will be non-universal.

I appreciate if anyone tells me whether my understanding is right.

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysic$\varnothing$OverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.