Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,786 comments
1,470 users with positive rep
820 active unimported users
More ...

  Definition of Special Kahler manifold

+ 2 like - 0 dislike
1071 views

I have a question on the very definition of a special Kahler manifold. One definition which is the most commonly used (and which I am most interested about) is to define this manifold by introducing a $(2n+2)$-dimensional symplectic bundle with sections $\Omega$ which are covariantly holomorphic. $$\begin{pmatrix} L^I\\ M_I \end{pmatrix}$$ See for example (String Theory and Fundamental Interactions Book edit by Maurizio Gasperini and Jnan Maharana) here.

As I am just trying to research on the subject, I find it a little too broad for me to absorb the fact of defining a manifold by introducing some bundle with some sections and starting to build up equations from them without understanding the origin of this definition. So I would be very grateful if someone could explain anything concerning the origin of this definition. Not necessarily all of it, actually any part of it will be very helpful to me.

Like why do we introduce a symplectic bundle and not maybe another type of bundle.

Perhaps why the sections must be covariantly holomorphic and what is meant by that precisely?


This post imported from StackExchange Physics at 2015-12-20 10:10 (UTC), posted by SE-user Beyond-formulas

asked Dec 19, 2015 in Mathematics by Beyond-formulas (15 points) [ revision history ]
recategorized Dec 20, 2015 by Dilaton

1 Answer

+ 4 like - 0 dislike

Special geometry is the geometry on the moduli space of (vectormultiplets) scalars in $\mathcal{N}=2$ $4d$ supergravity. A geometric realization of a $\mathcal{N}=2$ $4d$ supergravity is obtained by compactification of type IIB superstrig theory on a Calabi-Yau 3-fold $X$. In this case the moduli space is the moduli space of complex structures on $X$ and most of the objects of special geometry have a clear geometric significance. The dimension n of the moduli space is the Hodge number $h^{1,2}$ of $X$. There is clearly a natural bundle on the moduli space: the bundle whose fiber is the cohomology $H^3(X)$ of $X$, which is of rank $2n+2$, and is equipped with a symplectic form given by the intersection pairing on the cohomology group (it is symplectic because 3 is odd), there is a natural section given by the holomorphic volume form, periods of the holomorphic volume forms define the special coordinates...

answered Dec 24, 2015 by 40227 (5,140 points) [ revision history ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\varnothing$ysicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...