• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

177 submissions , 139 unreviewed
4,336 questions , 1,662 unanswered
5,102 answers , 21,667 comments
1,470 users with positive rep
645 active unimported users
More ...

  Where does the vanishing of gaugini supersymmetry come from?

+ 2 like - 0 dislike

Killing spinor equations are equations that result from supersymmetric transformations.

I understand that there in $N=2$ $D=4$ supergravity coupled to vector multiplets there is a graviton, 2 gravitini and a 'so-called' graviphoton. This can be found here http://arxiv.org/pdf/math/0002122.pdf where the author says:

"As we neglect here the hypermultiplets, we have to consider the basic supergravity multiplet and the vector multiplets.The supergravity sector contains the graviton, 2 gravitini and a so-called graviphoton"

So if fermions here should vanish in $N=2$ supergravity theories (those coupled to vector multiplets), we should see vanishing of gravitini supersymmetry only in order to give us the first Killing spinor equation.

My question is that I see the presence of both: the vanishing gravitini and gaugini supersymmetry in some papers in $N=2, D=4$ supergravity coupled to vector muliplets. Where does the gaugini supersymmetry come from?

asked Dec 29, 2015 in Theoretical Physics by anonymous [ no revision ]
reshown Apr 19, 2016 by dimension10

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights