• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,037 questions , 2,191 unanswered
5,345 answers , 22,705 comments
1,470 users with positive rep
816 active unimported users
More ...

  Relationship between modular transformations and anyon braiding

+ 1 like - 0 dislike

In the context of anyon braiding, we have $S$ and $T$ matrices which describe the mutual and self statistics of anyons. In the context of conformal field theory on a torus, we have modular transformations $S$ and $T$. ($T:\tau\rightarrow\tau+1$, $S:\tau\rightarrow -\frac{1}{\tau}$ with $\tau=\omega_2/\omega_1$ the modular parameter and $\omega_i$'s the periods of the lattice on a torus.)

What's the relationship between those two? I think the question could be related to the Dehn twists but don't know how.

This post imported from StackExchange Physics at 2015-09-30 17:14 (UTC), posted by SE-user Zhuxi Luo

asked Sep 25, 2015 in Theoretical Physics by Zhuxi Luo (5 points) [ revision history ]
edited Sep 30, 2015 by Dilaton

1 Answer

+ 2 like - 0 dislike

You get a three sphere by gluing two solid tori along their boundary by the mapping class group element S. You can get a Hopf link by filling each core of the two solid tori with a line operator. Thus, the (full) braiding phase between quasiparticles a and b is computed as

$\langle T^2, a | S | T^2, b \rangle$,

where the state $|T^2, a\rangle$ is the state on the torus obtained by performing the open path integral over the solid torus with the a line in its core.

answered Sep 30, 2015 by Ryan Thorngren (1,925 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights