# Superstring NS tachyon vertex operator

+ 3 like - 0 dislike
145 views

After reading some confusing chapter of various string theory book I'm trying to construct the Tachyon vertex operator for superstring theory. I know that this is removed after GSO projection, but for the moment I would like to construct this would-be vertex. It seems very strange to me that I couldn't find a systematic and precise treatment of this argument. However it seems to me rather natural (thought I didn't understand quite well why) to put an operator of the form

$$e^{-\phi}$$

where $\phi$ is the field used to bosonize $\beta\gamma$ system. This operator has conformal weight $h=1/2$, so it must not be the end of the story. However this starting point is confirmed by Polchinski (vol. 2 eq (10.4.22)). Now what else shoud I add? I was thinking some momentum $$e^{ikX(0,0)}$$ as it is done for the bosonic tachyon. But this operator has conformal weight $h=1$ itself and so I would get total conformal weight $h= 1 + 1/2 = 3/2$.

Then on the book by Blumenhagen et. al. I found this sentence:

"The ground state of NS sector is thus $e^{-\phi}c(0)|0\rangle.$" Which seems to me even wrong because the conformal weight of $c$ is $h=-1$

I know that I'm very confused about these superstring vertex operator. This is because I didn't find any book in which there is a comprehensible treatment. It would be of great help if someone provide a solution to this construction.

This post imported from StackExchange Physics at 2015-07-28 21:39 (UTC), posted by SE-user MaPo
 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOverf$\varnothing$owThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.