# Why is the mass dimension of anticommuting coordinates $[Mass]^{-1/2}$

+ 3 like - 0 dislike
256 views

I am reading a review ( http://arxiv.org/abs/hep-ph/9709356 ) about supersymmetry. On page 29 I have read that the mass dimension of the Grassmann anticommuting coordinates is $-1/2$. Why this? Why don't they have the same mass dimensions as the bosonic coordinates?

edited May 13, 2015

You can work out the dimension of any field from the fact that the free action must be dimensionless (in units where $\hbar=1$).

+ 5 like - 0 dislike

By definition supersymmetry transformations square to spacetime translations. In a superspace formalism the supersymmetry operator is constructed from the vector field $\partial_\theta$ with respect to the odd coordinates $\theta$. As this operator has to square to the vector field $\partial_x$ with respect to the even coordinates $x$, which is of dimension $1$, the vector field with respect to the odd coordinate has to be of dimension $1/2$ and so the odd coordinate as to be of dimension $-1/2$.

Equivalently, a typical superfield is of the form

$\phi + \theta \psi +...$

where $\phi$ is a scalar and $\psi$ a spinor. In $d$ spacetime dimensions, a scalar is of dimension $(d-2)/2$, a spinor is of dimension $(d-1)/2$ and so $\theta$ has to be of dimension $-1/2$.

answered May 14, 2015 by (5,120 points)
edited May 15, 2015 by 40227

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:$\varnothing\hbar$ysicsOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.