# J-function of cotangent bundle of complete flag variety

+ 3 like - 0 dislike
470 views

Givental and Kim showed that the $J$-function of the complete flag variety $Fl_n=SL_{n}/B$ becomes an eigenfunction of the Toda Hamiltonian. How about the $J$-function of the cotangent bundle $T^*Fl_n$ of the complete flag variety? Negut mentioned in the first page of the paper that the partition function $Z(m)$ in the paper is closely related to the $J$-function of $T^*Fl_n$. Does it mean that the $J$-function of $T^*Fl_n$ is an eigenfunction of the Calogero-Sutherland Hamiltonian $L(m)$ written in p.5 of the paper? Or does it satisfy some integrable differential equations which is closely related to Calogero-Sutherland?

I have done simple calculation for the case of $n=2$. For $Fl_2=\mathbb{P}^1$, the $J$-function is written as \begin{equation} J(\mathbb{P}^1;\hbar)=e^{\frac{tx}{\hbar}}\sum_{d\ge0} \frac{e^{td}}{\prod_{k=1}^d(x+k\hbar)^2}~. \end{equation} It is easy to check that \begin{equation} \left[\hbar^2\frac{\partial^2}{\partial t^2}-e^t\right]J(\mathbb{P}^1;\hbar)=0~. \end{equation} On the other hand, the $J$-function of $T^*\mathbb{P}^1$ takes the form \begin{equation} J(T^*\mathbb{P}^1;\hbar,m)\propto e^{\frac{tx}{\hbar}}\sum_{d\ge0} \frac{e^{td}\prod_{k=0}^{d-1}(x+m+k\hbar)^2}{m^{2d}\prod_{k=1}^d(x+k\hbar)^2}~, \end{equation} where we introduce $m$ in such a way that $J(T^*\mathbb{P}^1;\hbar,m) \to J(\mathbb{P}^1;\hbar)$ as $m\to\infty$. Essentially, $J(T^*\mathbb{P}^1;\hbar,m)$ satisfy the Gauss hypergeometric differential equation since it is of ${}_2F_1$ form. However, I cannot see that $J(T^*\mathbb{P}^1;\hbar,m)$ (up to a certain factor) is an eigenfunction of the Calogero-Sutherland Hamiltonian $L(m)$. Is there any relation between the Calogero-Sutherland Hamiltonian of $A_1$-type and the Gauss hypergeometric differential equation? Or is $J(T^*\mathbb{P}^1;\hbar,m)$ NOT an eigenfunction of the Calogero-Sutherland Hamiltonian?

This post imported from StackExchange MathOverflow at 2014-10-13 09:17 (UTC), posted by SE-user Satoshi Nawata
retagged Oct 13, 2014
Have you tried arxiv.org/abs/1001.0056 ?

This post imported from StackExchange MathOverflow at 2014-10-13 09:17 (UTC), posted by SE-user David Ben-Zvi
Thanks for your comments. Yes, I have tried it although I, as a physicist, cannot understand everything. Does the quantum (KZ) connection in this paper becomes a Hamiltonian of or annihilates the J-function of $T^*Fl_n$? The J-function involves gravitational descendent while it seems to me that the paper consider only quantum cohomology of springer resolutions. So I am not sure that this paper can be directly applied to the J-function.

This post imported from StackExchange MathOverflow at 2014-10-13 09:17 (UTC), posted by SE-user Satoshi Nawata
If I understand correctly, the point of the quantum D-module is that the J-function is a solution of it.. (the $\hbar$ in the quantum D-module counts descendants). That paper identifies the equivariant quantum D-module of $T^*Fl$ with the Calogero-Moser system for the dual group... (ie the quantized Seiberg Witten integrable system for the N=2* theory as you might expect)

This post imported from StackExchange MathOverflow at 2014-10-13 09:17 (UTC), posted by SE-user David Ben-Zvi
Thank you very much! I will read the paper more in detail.

This post imported from StackExchange MathOverflow at 2014-10-13 09:17 (UTC), posted by SE-user Satoshi Nawata

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsO$\varnothing$erflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.