• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,047 questions , 2,200 unanswered
5,345 answers , 22,709 comments
1,470 users with positive rep
816 active unimported users
More ...

  How algebraic geometry and motives appears in physics?

+ 7 like - 0 dislike

First, I'm not a physicist so I have just a little background in physics. I have been reading some noncommutative geometry books and papers (Connes, Rosenberg, Kontsevich etc) and a lot of high machinery from algebraic geometry such as étale cohomology and motives appears in such books, however I could not guess where these structures arise in physical situations. How algebraic geometry and motives appears in physics? Why do physicists needs to use a projective scheme? When this scheme (or other structure) needs a noncommutative analog?

This post imported from StackExchange Physics at 2014-09-11 07:54 (UCT), posted by SE-user user40276
asked Nov 6, 2013 in Mathematics by user40276 (140 points) [ no revision ]
Related: physics.stackexchange.com/q/29424

This post imported from StackExchange Physics at 2014-09-11 07:54 (UCT), posted by SE-user twistor59

1 Answer

+ 9 like - 0 dislike

Algebraic geometry as such appears because it happens to capture important aspects of the geometry of strings.

For instance the partition functions of superstrings are elliptic genera and the best way to understand this is to regard a torus-shaped string worlsheet as an elliptic curve, regard the moduli space of possible worldsheet tori as the moduli stack of elliptic curves or actually as the derived moduli stack of derived elliptic curves in derived algebraic geometry to finally understand that the Witten genus (superstring partition function) is but the shadow of the string orientation of tmf.

Similarly the target space Calabi-Yau geometries of interest due to the relation between supersymmetry and Calabi-Yau manifolds is best understood with tools from algebraic geometry. Similar statements apply to a bunch of other compactification geometries.

Now motives is another story. Motivic structure enters quantum physics in two dual guises, related to on the one hand algebraic deformation quantization and on the other hand to geometric quantization.

In the first case one observes that formal deformation quantization of $n$-dimensional field theory amounts to choosing an inverse equivalence to the formality map from $E_n$-algebras to $P_n$-algebras, this is explained here. The automorphism infinity-group of either side therefore naturally acts on the space of quantization choices and one shows (conjectured by Kontsevich, recently proven by Dolgushev) that the connected component group of this is the Grothendieck-Teichmüller group, a quotient of the motivic Galois group. Related to this in some way is Connes "cosmic Galois group" acting on the space of renormalizations of perturbative quantum field theory. According to Kontsevich, this explains the role of motivc structures in correlation functions in perturbative field theory, see at Motivic Galois group action on the space of quantizations.

On the other hand, in full non-perturbative geometric quantization in its modern cohomological form as geometric quantization by push-forward one finds a "cohesive" form of actual motivic cohomology exhibited by actual pure motives. In effect, a local ("extended") action functional on a space of histories is exhibited by a correspondence with the action itself exhibited by a twisted bivariant cocycle on the correspondence space, and the motivic path integral quantization of this corresponds to the induced pull-push index transform.

This is explained in the last section of arXiv:1310.7930 "differential cohomology in a cohesive topos" with more details in the thesis "Cohomological quantization of local prequantum boundary field theory".

This post imported from StackExchange Physics at 2014-09-11 07:54 (UCT), posted by SE-user Urs Schreiber
answered Nov 7, 2013 by Urs Schreiber (6,095 points) [ no revision ]
More details and more references are on the nLab at ncatlab.org/nlab/show/motives+in+physics .

This post imported from StackExchange Physics at 2014-09-11 07:54 (UCT), posted by SE-user Urs Schreiber
Wow! A lot of interesting things that I don't know. Do you know from where I start to learning these fancy stuffs (easy reference for beginners)? I just have some little background in Grothendieck's style algebraic geometry and complex manifolds (don't know Calabi-Yau, though).

This post imported from StackExchange Physics at 2014-09-11 07:54 (UCT), posted by SE-user user40276
For the appearance of motivic Galois groups in perturbative quantization see Connes-Marcolli's textbook ncatlab.org/nlab/show/… . For the appearance of generalized pure motives in higher geometric quantization see this thesis: ncatlab.org/schreiber/show/master+thesis+Nuiten .

This post imported from StackExchange Physics at 2014-09-11 07:54 (UCT), posted by SE-user Urs Schreiber

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights