Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

146 submissions , 123 unreviewed
3,953 questions , 1,403 unanswered
4,889 answers , 20,761 comments
1,470 users with positive rep
506 active unimported users
More ...

N=4 SYM from Klebanov Witten field theory

+ 2 like - 0 dislike
3225 views

This is with reference to M. J. Strassler's lectures on "The Duality Cascade" pg. 46. I want to see how $\mathcal{N}=4$ SYM emerges when D3 branes, in the KW setup, are placed at smooth point of the conifold, purely from field theory point of view.

That is: Given a $U(N) \times U(N)$ quiver with $A_i$ and $B_i$ in the bi-fundamental and the anti-bi-fundamental respectively and an $SU(2) \times SU(2)$ invariant quartic superpotential (which vanishes for $N=1$), in what manner do we higgs the theory so as to get $\mathcal{N}=4$ SYM?

For the case of $N=1$ there is a comment in the lectures. It says,

... suppose we just have one D3 brane and we allow $A_1B_1$ to have an expectation value, so that the D-brane sits at some point away from the singular point of the conifold. Then the gauge group is broken to $U (1)$, and six scalars remain massless — the six possible translations of the D3-brane away from its initial point — exactly the number needed to fill out an $\mathcal{N}= 4$ $U(1)$ vector multiplet.

I want to understand this statement. Please help me understand how to work out for case of $N=1$. I can try for the generic value of $N$.

This post imported from StackExchange Physics at 2014-08-31 18:06 (UCT), posted by SE-user Orbifold
asked Aug 31, 2014 in Theoretical Physics by orbifold (190 points) [ no revision ]

1 Answer

+ 3 like - 0 dislike

The conifold is the space of vacua of the Klebanov-Witten theory. It is obtained as the quotient of the complex four dimensional space of fields $A_1$,$A_2$,$B_1$,$B_2$ by the action of the gauge group $U(1) \times U(1)$. In this action, the diagonal $U(1)$ fixes everyone and only the point $(0,0,0,0)$ is fixed by the full $U(1) \times U(1)$. This implies that the gauge group of the theory is $U(1) \times U(1)$ at the singular point of the conifold and is Higgsed to the diagonal $U(1)$ for a point away from the singularity. At the singular point, the four fields $A_1$,$A_2$,$B_1$, $B_2$ can freely fluctuate despite the fact that the conifold is complex three dimensional: it is the definition of a singular point to have a tangent space of dimension, here complex four, greater than the dimension of the manifold. At a point away from the singularity, the four fields $A_1$,$A_2$,$B_1$, $B_2$ are in the adjoint of the diagonal $U(1)$ (of course, adjoint of $U(1)$ is trivial but I keep a terminology which works for the general $U(N)$ case) but one linear combination is frozen because the tangent space at such a point is complex three dimensional (for example, if $A_1 B_1$ is the only combination with a non-trivial expectation value, computation of the tangent space shows that the $A_2 B_2$ direction is frozen). This implies that the theory at this point is a $U(1)$ gauge theory with three massless chiral multiplets in the adjoint representation. This is exactly the content of a $U(1)$ $N=4$ vector multiplet (indeed, a $N=4$ vector multiplet is the same thing as a $N=2$ vector multiplet with a massless $N=2$ hypermultiplet in the adjoint, which is the same thing as a $N=1$ vector multiplet with three massless $N=1$ chiral multiplets in the adjoint). 

The $U(N)$ case is similar. The only new thing is to check that the superpotential of the Klebanov-Witten theory  reduces to the superpotential of the $N=4$ super Yang-Mills at a Higgsed point of the moduli space.

answered Sep 2, 2014 by 40227 (4,690 points) [ revision history ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOv$\varnothing$rflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...