# Moduli space for $CP^N$ and $T^{*} CP^N$ in $\mathcal{N}=2$ SUSY

+ 4 like - 0 dislike
207 views

For complex $\phi$ in $U(1)$ gauge theory, \begin{align} |\phi_1|^2 + |\phi_2|^2 +\cdots |\phi_N|^2 =r \end{align} This equation $|\phi|^2=r$, describes sphere $S^{2N-1}$. Dividing the space of this solution by the gauge group $U(1)$ we obtain that the moduli space for $\phi$ which is $\mathbf{CP}^{N-1}$

This procedure is based on the explanation in Witten's paper of "Phase of $\mathcal{N}=2$ theories in two dimensions". (Above situation corresponds to $\mathcal{N}=2$ supersymmetric $U(1)$ gauge theory with $N$ chiral superfields. Here i solve the equation for minimizng potential energy.)

Here what i want to extend this idea to following equations,
(This situation corresponds to $\mathcal{N}=2$ supersymmetric $U(1)$ gauge theory with $N$ chiral superfields and $N$ anti-chiral superfields. )

For same complex $\phi$ in $U(1)$ gauge theory, we have \begin{align} |\phi_1|^2 + |\phi_2|^2 \cdots +|\phi_N|^2 -|\phi_{N+1}|^2 - |\phi_{N+2}|^2 \cdots - |\phi_{2N}|^2 =r \end{align}

The results for this moduli space is known as $T^* \mathbf{CP}^{N-1}$ where $T^*$ represents cotangent bundle.

Here i want to know why this space is $T^* \mathbf{CP}^{N-1}$.

I cannot imagine your sources simply state that this is $T^*\mathbb{C}P^{N-1}$ without at least some explanation.
 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOverf$\varnothing$owThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.