Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Coadjoint orbits in physics

+ 9 like - 1 dislike
3589 views

I am looking for some application of coadjoint orbits in physics. If you know some of them please let me know.


This post imported from StackExchange Physics at 2014-08-06 18:58 (UCT), posted by SE-user 1234

asked Jun 2, 2014 in Mathematics by anonymous [ revision history ]
recategorized Mar 9, 2015 by Dilaton
I know that the Kirillov method of co-adjoint orbits has lots of uses in finding unitary representations. This has important applications for proving, e.g, the unitary or otherwise nature of a Lagrangian field theory as a quantum theory.

This post imported from StackExchange Physics at 2014-08-06 18:58 (UCT), posted by SE-user Arthur Suvorov
I know enough orbit method, but I am looking for recent results

This post imported from StackExchange Physics at 2014-08-06 18:58 (UCT), posted by SE-user 1234

Why?

@Dilaton, isn't this a typical reference request question?

@JiaYiyang I don't think so. Sure, some answers might be of the "community wiki", but in general, it's asking for an explanation.

4 Answers

+ 8 like - 0 dislike

Although groups and their representations were already applied to quantum mechanics almost from the birth of quantum theory, their central role was recognized in its full importance by Eugene Wigner. His work on crystallography, atomic and molecular spectra, relativity (unitary representations of the Poincaré group), led him to appreciate the major importance of groups and their representations in quantum mechanics.

After his pioneering work on the Poincaré group representations, most of his work was deeply connected to groups and their representations. Already in his work on the representations of the Poincaré group, he introduced the method of induced representations. He realized that the Galilean symmetry is realized as a projective (ray) representation on the Schrödinger wave functions. Also together with Inönu he introduced the theory of group contractions (and their representations). There are many people who consider quantization and group representations two faces of the same problem.

I included this long introduction about Wigner although Wigner himself (as far as I know) never worked on coadjoint orbits. But all his important work (which actually covered all major areas of quantum physics) is intimately connected to coadjoint orbits. In fact coadjoint orbits may serve as a unifying principle of all the seemingly separate models on which Wigner worked: Wigner's classification of the representations of the Poincaré group is actually a classification of the Poincaré coadjoint orbits and their quantization, please see for example the following work: by Cariñena, Gracia-Bondia, Lizzi, Marmo and Vitale. Also, the projective representations that Wigner dealt with appear naturally in the coadjoint orbit picture, since, for example, an integral coadjoint orbit is a smooth projective variety (please see for example the following article by: Schlichenmaier. Also, the representations in the Inönu-Wigner contractions are also at least partially) related to quantizations of coadjoint orbits, please see the following two articles by Benjamin Cahen.

Although they appear in other contexts in physics, coadjoint orbits can be thought as the classical phase spaces corresponding to the internal degrees of freedom of quantum particles such as spin, flavor, color etc. This picture allows the treatment of the translational degrees of freedom whose corresponding phase spaces are cotangent bundles and the internal degrees of freedom on the same footing. One important application in which both degrees of freedom coexist and interact is the Wong equations which generalize the Lorentz equation for a particle with a nonAbelian charge such as color:

$$ \frac{dx^i}{dt} = p^i$$

$$ \frac{dp^i}{dt} = F^a_{ij}(x)T_a(y)p^i$$

$$ \frac{dT_a}{dt} = -f^c_{ab}A^b_j(x)T_c(y)$$

Where $A^b_j$ is the Yang-Mills vector potential $F^a_{ij}$ the corresponding field strength, $x^i$ and $p ^i$, the position and momentum coordinates $T_a(y)$ are the Hamiltonian functions on the coadjoint orbits representing the nonAbelian charges and $f^c_{ab}$ the structure constants, and $y$ are the coordinates on the coadjoint orbits. For a deeper discussion please see the following thesis by: Rainer Glaser.

Quantization of coadjoint orbits leads to unitary representations of the corresponding groups. The representations are usually realized as reproducing kernel Hilbert spaces of sections of line bundles. These representations are realized as coherent state representation (please see for example the following article by: Boya, Perelomov and Santander) which makes them especially suited for semiclassical analysis. (please see again the Rainer Glaser thesis).

All coadjoint orbits of compact semsimple Lie groups and some of the coadjoint orbits of the noncompact groups are Kähler. The quantization of these orbits can be achieved by means of the Berezin Toeplitz quantization, please see the following review by Schlichenmaier. Also being Kähler and homogeneous makes these coadjoint orbits accessible to explicit work. Please see also the following article by: Bernatska, and Holod for examples of actual explicit work on semisimple coadjoint orbits. It is important to mention that in order to be able to quantize a compact coadjoint orbit, it needs to be integral, i.e., the flux of its symplectic form through 2-cycles must be quantized. This is the Dirac quantization condition.

The most elementary coadjoint orbit is the two-sphere. Its quantization leads to the theory of spin angular momentum, please see for example the original work by Berezin. Spin systems, which constitute of important models in the theory of magnetism, can be studied using generalizations of these ideas. Please see for example the following article by: Bykov.

The representations associated with integral coadjoint orbits can be obtained as zero modes of a Landau problem of a particle moving on the coadjoint orbit in a magnetic field equal to the symplectic form. The quantization Hilbert space is obtained as the (degenerate) space of the lowest Landau level. Please see, for example, the following lecture notes.

There is an important further application to Yang-Mills and Chern-Simons type of theories called the nonAbelian Stokes theorem in which a Wilson loop can be expressed as a Feynman-path integral over loops on a coadjoint orbit which may be given heuristically as:

$$tr_{\mathcal{H}}T\{exp(i\oint A^{a}(t) T_a)\}= \mathrm{lim}_{m\rightarrow \infty}\int exp\big (i\int _0^T \alpha^{\mathcal{H}}_i\dot{z}^i - \bar{\alpha}^{\mathcal{H}}_i \dot{\bar{z}}^i + \frac{m}{2}g_{i\bar{j}}\dot{z}^i \dot{\bar{z}}^j+A^{a} (t)T^{\mathcal{H}}_a(z, \bar{z})\big) \mathcal{D}z\mathcal{D}\bar{z}$$

Where $\alpha^{\mathcal{H}}$ is the symplectic potential of the coadjoint orbit corresponding to the representation $\mathcal{H}$ (via the Borel-Weil-Bott theorem). The symbol $T_a$ is used for a Lie algebra element in the Wilson loop and also for the corresponding Hamiltonian function inside the path integral. $z$ are the coordinates of the coadjoint orbit. The action describes a particle in a magnetic field which has a distributed charge density as the Hamiltonian function. The limit $m\rightarrow \infty$ is taken to dominate the lowest Landau level over the path integral. This representation has been used for the insertion of Wilson loops in the QCD Path integrals (in the study of confinement) and also the insertion of Wilson loops in the Cher-Simons theory leading to the Jones polynomials.

There are explicitly known classifications of some cases of infinite dimensional coadjoint orbits, mainly, those relevant to string theory. A complete classification of the coadjont orboits of the orientation preserving diffeomorphism group of the circle $Diff^{+}(S^1)$ are given by: Jialing and Pickrell. The classification of coadjoint orbits of loop groups is also known, please see the following lecture notes by Khesin and Wendt.

Coadjoint orbits appear in many more areas and applications in physics. The applications mentioned above are may be the most known in my personal point of view.

This post imported from StackExchange Physics at 2014-08-06 18:58 (UCT), posted by SE-user David Bar Moshe
answered Jun 2, 2014 by David Bar Moshe (4,355 points) [ no revision ]
This is an excellent answer, +1. As a side note, usually one does not have to resort to using the fully sophisticated co-adjoint orbits for compact groups since the Peter-Weyl theorem is available.

This post imported from StackExchange Physics at 2014-08-06 18:58 (UCT), posted by SE-user Arthur Suvorov

The references are really excellent!

What is the reference for the representation of Wilson loop via coadjoint orbits?

@JohnS:  You can find the connection ,e.g., in Chapter 4 of a long paper by Beasley.

+ 4 like - 0 dislike

The Wilson loop observables inside 3d Chern-Simons gauge field theory are secretly themselves the quantization of a 1d field theory in terms of coadjoint orbits.

This possibly still surprising-sounding statement was hinted at already on p. 22 of the seminal

  • Edward Witten, Quantum Field Theory and the Jones Polynomial Commun. Math. Phys. 121 (3) (1989) 351–399. MR0990772 (project EUCLID)

 A detailed discussion of how this works is in section 4 of

  • Chris BeasleyLocalization for Wilson Loops in Chern-Simons Theory, in J. Andersen, H. Boden, A. Hahn, and B. Himpel (eds.) Chern-Simons Gauge Theory: 20 Years After, , AMS/IP Studies in Adv. Math., Vol. 50, AMS, Providence, RI, 2011. (arXiv:0911.2687)

following

  • S. Elitzur, Greg Moore, A. Schwimmer, and Nathan SeibergRemarks on the Canonical Quantization of the Chern-Simons-Witten Theory, Nucl. Phys. B 326 (1989) 108–134.

The idea is indicated on the nLab here.

As also discussed there, the statement that there is a coadjoint orbit 1d quantum field theory sort of "inside" 3d Chern-Simons theory has a nice interpretation from a point of view of extended quantum field theory. This we have discussed in section 3.4.5 of

So given the ubiquity of Chern-Simons theory in QFT, and the fact that much of what is interesting about it is encoded in its Wilson loop observables, this means that quantization of coadjoint orbits plays a similarly important role. For instance given that all of rational 2d conformal field theory is dually encoded, via the FRS theorem, by 3d Chern-Simons theory in such a way that CFT field insertions are mapped to the CS Wilson loops, this means that quantized coadjoint orbits are at work behind the scenes in much of 2d CFT.

answered Feb 1, 2015 by Urs Schreiber (6,095 points) [ no revision ]
+ 1 like - 1 dislike

I am going to run the risk of having someone else contradict me. My short answer is

No.

There are no longer any applications of co-adjoint orbits to Physics. The topic of co-adjoint orbits belongs to mathematical physics, which is not real Physics.

The work started by Souriau and Kostant on geometric quantisation (I should also mention Michelle Vergne and her students) is about quantisation, which is how to produce a Quantum Mechanical system from a given Classical System. This was interesting back in the 30's, but no longer has any use. What is of interest now are the Quantum Systems which have no Classical analogue, and so cannot be obtained by quantisation at all.

That said, I will eat my words if someone shows me a plausible route from co-adjoint orbits to a completely novel Quantum Field Theory that does not need renormalisation. I have not heard of anything remotely like that, but if there were such an impossible thing, that could be interesting.

This post imported from StackExchange Physics at 2014-08-06 18:58 (UCT), posted by SE-user joseph f. johnson
answered Jun 2, 2014 by joseph f. johnson (500 points) [ no revision ]
+ 0 like - 0 dislike

Vector coherent state theory, as reviewed by Rowe and Repka, J. Math. Physics. 32 (1991) 2614, is a powerful theory of induced representations that has been used widely in nuclear physics.  It has been shown by Bartlett et al.,  J. Math. Physics. 35 (2002) 5599, 5625  to be intimately related to the mathematical theory of geometrical quantisation.

answered Apr 28, 2017 by anonymous [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysics$\varnothing$verflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...