• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

174 submissions , 137 unreviewed
4,308 questions , 1,640 unanswered
5,089 answers , 21,602 comments
1,470 users with positive rep
635 active unimported users
More ...

  What is 'heterotic string compactification'?

+ 3 like - 0 dislike

I've read that some exceptional groups arises in the context of 'heterotic string compactification'.

Could someone explain (to a person studying physics but who doesn't know string theory) what heterotic string compactification involves and what why exceptional groups have to do with it?

This post imported from StackExchange Physics at 2014-06-15 16:46 (UCT), posted by SE-user Anne O'Nyme
asked Jun 13, 2014 in Theoretical Physics by Anne O'Nyme (170 points) [ no revision ]

1 Answer

+ 3 like - 0 dislike

That's an easy question. I'll assume in this answer, for the purposes of PhysicsOverflow, that you have at least a basic knowledge of quantum field theory.

Heterotic strings, as their name suggests, arise as a "hybrid" of a bosonic string and a Type II superstring. This "hybrid" is formed by the left-movers of the bosonic string and the right-movers of the Type II string.

Now, Bosonic strings are consistent only in 26-dimensional spacetime. The consistency argument depends on the type of quantisation that you use. If you use canonical quantisation to quantise your bosonic string, then one needs a central charge of 26 to cancel out the negative-norm-square states from the theory. If you use Light Cone Gauge quantisation, 26 is the only spacetime dimension in which Lorentz Invariance is respected in bosonic string theory. Generally, you need a 26-dimensional spacetime to get rid of "conformal anomaly". Even if you are ready (which you shouldn't be) to accept negative-norm-square ghost states or the lack of Lorentz Invariance, you need a dimension of 26 to ensure that the different quantisation methods are consistent with one another in string theory.

On the other hand, Type II superstrings are only consistent in 10-dimensional spacetime, for similar reasons to the bosonic string. But you obviously can't have the left-movers living in 26-dimensional spacetime with the right-movers living in 10-dimensional spacetime!

The solution is to compactify the spacetime of the left-movers on a 16-dimensional lattice. This means that you make 16 of the dimensions of the left-movers' spacetime infinitesimally small. It happens to be (see notes) that this lattice needs to be even and unimodular. There are only 2 lattices that satisfy this. Namely, \(\frac{\operatorname{Spin}\left(32\right)}{\mathbb{Z}_2}\) and \(\left(E_8\right)^2\). The second is the cartesian product of an exceptional group with itself.


For an explanation as to why the lattice must be unimodular and even, see this article and this answer.

answered Jun 16, 2014 by dimension10 (1,975 points) [ no revision ]
Concise explanation +1, I will ensure that the OP sees it ...

Please log in or register to answer this question.

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights