# About parametrizing quadratic fluctuations in the metric about $AdS_2 \times S^2$

+ 2 like - 0 dislike
120 views

I am referring to the contents of page 20-23 of the paper, http://arxiv.org/abs/1108.3842.pdf

• Equation 4.5 seems to suggest that one wants to restrict the metric fluctuations $h$ to a subset such that, $D^\mu h_{\mu \rho} = (1/2)D_\rho h^\mu _ \mu$. (where the $D$ is presumably calculated on the background metric and the indices of $h$ are raised and lowered w.r.t the background metric) What is the motivation for this and how does one see that this fixes all the gauge freedom?

• Can someone explain (or give reference) to how equation 4.6 and 4.7 were derived? (I tried a lot but couldn't get this simplification)

• In equation 4.6 and 4.7 is it possible to impose the condition that the background metric is whatever is standard on $AdS_2 \times S^2$? (..is there a covariant way of putting in this background?..)

[...the following questions can be asked about equation 4.22, 4.23 and 4.30 too .. ]

• In equation 4.14 it seems that one parametrized the 10 components of the 4 dimensional metric $h$ via 10 scalars $B_0,..,B_9$. How has this been done?

There $u$ seems to be a chosen scalar harmonic on $AdS_2 \times S^2$ and it seems to suggest that somehow the metric components can be expressed in terms of derivatives of such a harmonic scalar. How? Can someone help derive this $4.14$?

In 4.14 the variables used $\kappa_1$ and $\kappa_2$ are defined in 4.11 and its not well motivated to me. Also these have such a singular dependence on the variable "a" - which as can be seen in 4.12 parametrizes the Abelian gauge field strength. Then is it obvious from here as to what will the parametrization be if it were just pure gravity?

It looks mysterious to me that when 4.14 is substituted into 4.6 all dependency on $u$ seems to be have vanished to give a far simpler looking 4.15, How has this "magic" happened?

• Also if the base manifold had been just $AdS_2$ then what would have been the parametrization? Is that easily readable from 4.14?

• Is there some general principle at play here by which one can automatically generate such 4.14 like parametrizations for say any $AdS_n \times S^m$?

This post imported from StackExchange Physics at 2014-06-10 21:31 (UCT), posted by SE-user user6818
 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOverf$\varnothing$owThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.