Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,047 questions , 2,200 unanswered
5,345 answers , 22,709 comments
1,470 users with positive rep
816 active unimported users
More ...

  About parametrizing quadratic fluctuations in the metric about $AdS_2 \times S^2$

+ 2 like - 0 dislike
532 views

I am referring to the contents of page 20-23 of the paper, http://arxiv.org/abs/1108.3842.pdf

  • Equation 4.5 seems to suggest that one wants to restrict the metric fluctuations $h$ to a subset such that, $D^\mu h_{\mu \rho} = (1/2)D_\rho h^\mu _ \mu$. (where the $D$ is presumably calculated on the background metric and the indices of $h$ are raised and lowered w.r.t the background metric) What is the motivation for this and how does one see that this fixes all the gauge freedom?

  • Can someone explain (or give reference) to how equation 4.6 and 4.7 were derived? (I tried a lot but couldn't get this simplification)

  • In equation 4.6 and 4.7 is it possible to impose the condition that the background metric is whatever is standard on $AdS_2 \times S^2$? (..is there a covariant way of putting in this background?..)

[...the following questions can be asked about equation 4.22, 4.23 and 4.30 too .. ]

  • In equation 4.14 it seems that one parametrized the 10 components of the 4 dimensional metric $h$ via 10 scalars $B_0,..,B_9$. How has this been done?

    There $u$ seems to be a chosen scalar harmonic on $AdS_2 \times S^2$ and it seems to suggest that somehow the metric components can be expressed in terms of derivatives of such a harmonic scalar. How? Can someone help derive this $4.14$?

    In 4.14 the variables used $\kappa_1$ and $\kappa_2$ are defined in 4.11 and its not well motivated to me. Also these have such a singular dependence on the variable "a" - which as can be seen in 4.12 parametrizes the Abelian gauge field strength. Then is it obvious from here as to what will the parametrization be if it were just pure gravity?

    It looks mysterious to me that when 4.14 is substituted into 4.6 all dependency on $u$ seems to be have vanished to give a far simpler looking 4.15, How has this "magic" happened?

  • Also if the base manifold had been just $AdS_2$ then what would have been the parametrization? Is that easily readable from 4.14?

  • Is there some general principle at play here by which one can automatically generate such 4.14 like parametrizations for say any $AdS_n \times S^m$?

This post imported from StackExchange Physics at 2014-06-10 21:31 (UCT), posted by SE-user user6818
asked Jun 8, 2014 in Theoretical Physics by user6818 (960 points) [ no revision ]
Minor comment to the post (v1): In the future please link to abstract pages rather than pdf files, e.g., arxiv.org/abs/1108.3842

This post imported from StackExchange Physics at 2014-06-10 21:31 (UCT), posted by SE-user Qmechanic

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsO$\varnothing$erflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...