# Why $(\Psi_0,O_l(0)\Psi_{\mathbf{q}_1,\sigma})=(2\pi)^{-3/2}Nu_l(\mathbf{q}_1,\sigma)$ ? The equ. 10.3.3 in the first volume of Weinberg's QFT book

+ 5 like - 0 dislike
550 views

Why $(\Psi_0,O_l(0)\Psi_{\mathbf{q}_1,\sigma})=(2\pi)^{-3/2}Nu_l(\mathbf{q}_1,\sigma)$? It's the equation 10.3.3 in the first volume of Weinberg's QFT book.

$u_l(\mathbf{q}_1,\sigma)$ is the coefficient function appearing in the field $\psi_l$ with the same Lorentz transformation properties as $O_l$, and N is a constant.

+ 3 like - 0 dislike

For notational simplicity let's define

$$\begin{equation}f_l(\mathbf{q},\sigma):=(\Psi_0,O_l(0)\Psi_{\mathbf{q},\sigma})\end{equation}$$

Now the task is to show $f_l(\mathbf{q},\sigma)$ transforms in the same way as $u_l(\mathbf{q},\sigma)$ under homogeneous Lorentz transformation $\Lambda$, i.e. transforms as given in equation (5.1.19), which, together with irreducibility, defines $u_l(\mathbf{q},\sigma)$ uniquely up to a constant multiplication.

Due to the Lorentz invariance of vacuum and the fact $\Lambda 0=0$, we have(adopting the repeated index summation convention)

$$\begin{equation}f_m(\mathbf{q},\sigma)=(\Psi_0,U(\Lambda)O_m(0)U^{-1}(\Lambda)U(\Lambda)\Psi_{\mathbf{q},\sigma})\\=D_{ml}^{-1}(\Lambda)(\Psi_0,O_{l}(0)U(\Lambda)\Psi_{\mathbf{q},\sigma}),\end{equation}$$

which is equivalent to

$$\begin{equation}D_{lm}(\Lambda)f_m(\mathbf{q},\sigma)=(\Psi_0,O_{l}(0)U(\Lambda)\Psi_{\mathbf{q},\sigma}).\end{equation}$$

Now substitute equation (2.5.11) to the RHS we get

$$\begin{equation} D_{lm}(\Lambda)f_m(\mathbf{q},\sigma)=\sqrt{\frac{(\Lambda p)^0}{p^0}}D^{(j_n)}_{\sigma'\sigma}(W)(\Psi_0,O_{l}(0)\Psi_{\mathbf{q}_\Lambda,\sigma'})\\=\sqrt{\frac{(\Lambda p)^0}{p^0}}D^{(j_n)}_{\sigma'\sigma}(W)f_l(\mathbf{q}_\Lambda, \sigma')\end{equation}$$

This is exactly (5.1.19).

Note that $D_{lm}(\Lambda)$ is assumed to be irreducible in the book,

...where $O_l(x)$ is a Heisenberg-picture operator, with the Lorentz transformation properties of some sort of free field $\psi_l$ belonging to an irreducible representation of the homogeneous Lorentz group... (page 437)

hence by the discussion in chapter 5(e.g. content at the bottom of page 196), our function can differ $u_l(\mathbf{q},\sigma)$ only by a constant multiplication.

answered May 15, 2014 by (2,640 points)
edited May 15, 2014

And since $f_l(\mathbf q, \sigma)$ transforms irreducible, the two can differ only by a constant coefficient. Is this the point?

Thank you very much!

@coolcty, Yes. My answer was slightly confusing, I'll edit my answer to clarify a bit.

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$y$\varnothing$icsOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.