# Explicit evaluation of a radially ordered product

+ 1 like - 0 dislike
196 views

I am trying to understand the application of the operator product expansion to calculate the radially ordered product in the complex plain of $T_{zz}(z)\partial_w X^{\rho}(w)$ which should result in

$$\langle R(T_{zz}(z)\partial_w X^{\rho}(w))\rangle = -l_s^2\frac{1}{(z-w)^2}\partial_w X^{\rho}(w) - l_s^2\frac{1}{(z-w)}\partial_z^2 X^{\rho}(z) + \cdots$$

but embarassingly I encounter a stumbling block right at the beginning. After inserting $T_{zz}(z) \doteq \, :\eta_{\mu\nu}\partial_z X^{\mu}\partial_zX^{\nu}:$ one has

$$\langle R(T_{zz}(z)\partial_w X^{\rho}(w))\rangle = R(:\eta_{\mu\nu}\partial_z X^{\mu}(z)\partial_zX^{\nu}(z):\partial_w X^{\rho}(w))$$

which can obviously be further expanded to

$$... = \eta_{\mu\nu}\langle \partial_z X^{\mu}(z)\partial_w X^{\rho}(w)\rangle \partial_z X^{\nu}(z) + \eta_{\mu\nu}\langle \partial_z X^{\nu}(z)\partial_w X^{\rho}(w)\rangle \partial_z X^{\mu}(z)$$

It is exactly this last step I dont understand. If this initial stumbling block is removed, I can understand the rest of the derivation, so can somebody help me remove it?

To generalize a bit, it seems I do not yet properly understand how such expressions involving normal and radial (time) ordered products are generally evaluated. So if somebody could give me a more general hint about this, I would probably be able to see how the last expression in my particular example is obtained.

edited May 1, 2014

This post imported from StackExchange Physics at 2014-03-12 15:19 (UCT), posted by SE-user Qmechanic

Darn, I forgot the check to edit silently, sorry :-/

@Dilaton Oh yes, editing silently when doing a mass edit-out of attributions of one's own posts, to not flood the main page seems like a good idea.

I think I should also practise that in my mass-retag of all posts.

But I think it is fine to not check the box for unanswered questions.

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOverfl$\varnothing$wThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.