• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,064 questions , 2,215 unanswered
5,347 answers , 22,734 comments
1,470 users with positive rep
818 active unimported users
More ...

  Can the fuzzball conjecture be applied to microscopically explain the entropy of a region beyond the gravitational observer horizon?

+ 1 like - 0 dislike

In this article discussing this and related papers, it is explained among other things, how the neighborhood of an observer's worldline can be approximated by a region of Minkowsky spacetime.

If I understand this right (corrections of confused fluff and misunderstandings are highly welcome), a coordinate transformation which depends on the observer's current location $p_0$ in the classical backround spacetime, to a free falling local Lorentz frame is applied. In this reference frame, local coordinates ($\tau$, $\theta$, $\phi$) together with a parameter $\lambda$ (which describes the location on the observer's worldline?) can be used. As $\lambda$ deviates too mach from $\lambda(p_0)$, the local proper acceleration $\sqrt{a_{\mu}a^{\mu}}$ becames large and approaches the string scale (is this because flat Minkowsky space is only locally valid?) and stringy effects kick in.

The authors postulate that at these points (called the gravitational observer horizon) some microscopic degrees of freedom have to exist that give rise to the Beckenstein-Hawking entropy describing the entropy contained in spacetime beyond the gravitational observer horizon (?).

This is quite a long text to introduce my question, which simply is: Can these microstates be described by the fuzzball conjecture or what are they assumed to "look" like?

asked Apr 6, 2013 in Theoretical Physics by Dilaton (6,240 points) [ revision history ]

1 Answer

+ 2 like - 0 dislike

Can these microstates be described by the fuzzball conjecture or what are they assumed to "look" like?

We don't know. The gravitational observer horizon is supposed to be a place where low-energy physics becomes invalid (i.e. one shouldn't trust GR and quantum field theory of a spacetime background). For an observer far from a black hole, this horizon roughly agrees with the usual black hole horizon, and something like the fuzzball scenario may be appropriate. However, the paper remains agnostic about the details of the high-energy physics (it can hopefully be described well in string theory). For now, the only thing we can say with (a reasonable level of) certainty is the number of degrees of freedom in an observer horizon.

together with a parameter λ (which describes the location on the observer's worldline?)

I think you've misunderstood the meaning of $\lambda$. Take a look at the figure in the paper. It is an affine parameter the goes down the past light cone of the observer. (The observer is at $\lambda=0$.) The observer horizon occurs when a trajectory of constant $\lambda$ but changing $\tau$ accelerates too much to be described safely by GR.

This post imported from StackExchange Physics at 2014-03-09 16:25 (UCT), posted by SE-user sjasonw
answered Apr 13, 2013 by sjasonw (20 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights