Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

(propose a free ad)

In a previous question (Calabi-Yau manifolds and compactification of extra dimensions in M-theory), I was told that the $G(2)$ lattice can be used to compactify the extra 7 dimensions of M-theory and preserve exactly $\mathcal N=1$ supersymmetry.

However, since there is only 1 $G(2)$ lattice, there should be only 1 4-dimensional M-theory. Then, why is there such a huge fuss about the M-theory landscape?

Thanks!

It's not a "$G(2)$ lattice" one has to compactify the M-theoretical dimensions upon (after all, the $G_2$ lattice is 2-dimensional); it's the $G_2$ holonomy manifolds. There are lots of different topologies of these seven-dimensional manifolds. They're analogous to the Calabi-Yau manifolds but don't allow one to use the machinery of complex numbers.

user contributions licensed under cc by-sa 3.0 with attribution required