# Dimensional Regularization Integral Formula

+ 5 like - 0 dislike
128 views

In the formula $$\int \frac {d^{4-2\epsilon} l} {(2\pi)^{4-2\epsilon}} \frac 1 {(l^2-\Delta)^2} = \frac i {(4\pi)^{2-\epsilon}} \Gamma(\epsilon) \left(\frac 1 \Delta\right)^\epsilon,$$ how should I deal with the case when $\Delta<0$?

This post has been migrated from (A51.SE)

+ 2 like - 0 dislike

In complex calculus, one may compute powers – and other functions – for all negative or complex values of the argument. But it would lead to confusions and ambiguities and indeed, it's not needed.

Whenever the theory is stable, it's guaranteed that $\Delta$ in these d.r. integrals ends up positive. A typical value of $\Delta$ for Feynman-parameterized integrals is an example from a 4-point diagram (imagine 2 to 2 scattering) $$\Delta = m^2 - x(1-x)q^2$$ Now, $m^2$ is positive because we don't have tachyons and $x(1-x)$ is between $0$ and $1/4$. The only risk how the second term could beat $m^2$ and make $\Delta$ negative is that $q$ is hugely timelike, with length over $2m$. But it really can't happen because $q$ is the sum of two external momenta. Timelike $2m$ length is really the maximum and in most cases, $q$ will end up shorter or spacelike. The UV region we're integrating corresponds to very long spacelike $q$ (all directions in the Euclideanized spacetime are spacelike) for which $\Delta$ is high and positive because the spacelike vectors have negative signature above.

I can't provide you with a general proof (it may be easy, however) but I am pretty sure that the negative-$\Delta$ problem doesn't arise in any loop diagrams.

This post has been migrated from (A51.SE)
answered Dec 17, 2011 by (10,278 points)
I have an example where $\Delta$ is negative. Consider the one-loop EM vertex correction for fermion-fermion scattering in QED. Ignoring fermion masses, we have $\Delta=-x(1-x)q^2$, where $q^2$ is the photon virtuality. Now $q^2$ is -ve for t-channel elastic scattering, but +ve for s-channel scattering, so $\Delta$ may have either signs.

This post has been migrated from (A51.SE)
+ 2 like - 0 dislike

I point out that I agree with the preceding answer but the question here is just a mathematical one. The value of the integral will depend on the sign of $\Delta$. So, if $\Delta<0$ the integral value is not the one you wrote but

$$\int dx\frac{x^{3-2\epsilon}}{(x+\Delta)^2}=x^{2-2\epsilon}\left(\frac{1}{x-\Delta^2}\right)^{2\epsilon-2}\ _2F_1(2\epsilon-2, 2\epsilon-3, 2\epsilon-1, -\Delta^2/(x - \Delta^2))\times$$ $$\frac{1}{2-2\epsilon}$$

The beast that you see on the rhs is a hypergeometric function that does not converge when you take the limit of $x$ going to infinity. So, physical arguments given above are sound.

This post has been migrated from (A51.SE)
answered Dec 17, 2011 by (345 points)

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysics$\varnothing$verflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.