Quantum statistics of branes

+ 6 like - 0 dislike
444 views

Quantum statistics of particles (bosons, fermions, anyons) arises due to the possible topologies of curves in D-dimensional spacetime winding around each other

What happens if we replace particles by branes? It seems like their quantum statistics should be described by something like a generalization of TQFT in which the "spacetime" (worldbrane) is equipped with an embedding into an "ambient" manifold (actual spacetime). The inclusion of non-trivial topology for the "ambient" manifold introduces additional effects, to 1st approximation describable by inclusion of k-form fluxes coupling to the brane. To 2nd approximation, however, there is probably non-trivial coupling between these fluxes and the "generalized quantum statistics"

A simple example of non-trivial "brane quantum statistics" is the multiplication of quantum amplitudes of strings by the exponential of the euler charactestic times a constant. In string theory this corresponds to changing the string coupling constant / dilaton background.

Were such generalized TQFTs studied? Which non-trivial examples are there for branes in string theory?

This post has been migrated from (A51.SE)
You are probably aware of this, but just for completeness: N coincident branes have a U(N) gauge symmetry, which is broken to $U(1)^N\times S_N$ when they are separated. The permutation symmetry $S_N$ is a discrete gauge symmetry which ensures branes are treated as identical particles. Your question seems related to which kind of identical particles they are (bosons, fermions, or anyons).
 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:$\varnothing\hbar$ysicsOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). Please complete the anti-spam verification