# Hilbert-Schmidt basis for many qubits - reference

+ 9 like - 0 dislike
2741 views

Every density matrix of $n$ qubits can be written in the following way $$\hat{\rho}=\frac{1}{2^n}\sum_{i_1,i_2,\ldots,i_n=0}^3 t_{i_1i_2\ldots i_n} \hat{\sigma}_{i_1}\otimes\hat{\sigma}_{i_2}\otimes\ldots\otimes\hat{\sigma}_{i_n},$$ where $-1 \leq t_{i_1i_2\ldots i_n} \leq 1$ are real numbers and $\{\hat{\sigma}_0,\hat{\sigma}_1,\hat{\sigma}_2,\hat{\sigma}_3\}$ are the Pauli matrices. In particular for one particle ($n=1$) it is the Bloch representation.

Such representation is used e.g. in a work by Horodecki arXiv:quant-ph/9607007 (they apply $n=2$ to investigate the entanglement of two qubit systems). It is called decomposition in the Hilbert-Schmidt basis.

The question is if there is any good reference for such representation for qubits - either introducing it for quantum applications or a review paper? I am especially interested in the constrains on $t_{i_1i_2\ldots i_n}$.

This post has been migrated from (A51.SE)
Just having read the question, and possibly not understanding correctly yet, What additional constraints should there be on $t_{i_1i_2\ldots i_n}$ other than leading to a normalised $\hat\rho$?

This post has been migrated from (A51.SE)
It is simply decomposition of $4^n$ dimensional “vector” with an orthogonal basis. Vector space is space of $2^n \times 2^n$ Hermitian matrices with respect to norm $(A,B) =Tr(AB) = Tr(AB^*)$. But I doubt, it could be called Hilbert-Schmidt decomposition because it is defined for any $n$ and for $n=2$ produces up to 16 terms instead of 4.

This post has been migrated from (A51.SE)
Googling leads me into progressively more mathematical territory. There is a small chance that this is a result well known enough to mathematicians that it jumped into QI sideways as a standard tool used by a mathematical physicist. I've seen the Hilbert-Schmidt basis used without even labelling it. See for example the [answer I gave to my own question](http://theoreticalphysics.stackexchange.com/q/537/569) a couple of days ago. I used it without thinking of the name, as did the paper I was referring to in that post. This unfortunately only compounds the stupidity shown in my first comment...

This post has been migrated from (A51.SE)
@AlexV I know that it has nothing to do with the Schmidt decomposition.

This post has been migrated from (A51.SE)
So the term due to Hilbert-Schmidt inner product for matrices?

This post has been migrated from (A51.SE)

This post has been migrated from (A51.SE)
Maybe the discrete Wigner function is a bit other story, because they need to use trace on $GF(2^n)$ and exchange components in Hilbert-Schmidt scalar product.

This post has been migrated from (A51.SE)

+ 3 like - 0 dislike

I use this decomposition all the time, but I have never read a paper solely devoted to the topic. From my experience a complete characterization of the constraints on $t_{i_{1}, t_{2},..t_{n}}$ is tricky, and so if you want to be sure $\rho$ is physical you should calculate the density matrix and its eigenvalues.

However, there are a lot of necessary conditions that have a useful form in this decomposition. For example, for a positive unit-trace Hermitian operator $\rho$ is follows that

$|t_{i_{1}, i_{2},.. i_{n}}| \leq 1$

$tr ( \rho^{2} ) =\frac{1}{2^{n}} \sum_{i_{1}, i_{2},.. i_{n}} t_{i_{1}, i_{2},.. i_{n}}^{2} \leq 1$

The above condition tells us that if we think of $t$ as a vector in a real vector space, then the physical states live within the unit sphere. This is a bit like the Bloch sphere for 1 qubit but for many qubits we have some other constraints that take the form of hyperplanes. For every $\vert \psi \rangle$ expressed in the same form $\vert \psi \rangle \langle \psi \vert = \frac{1}{2^{n}} \sum_{i_{1},i_{2},... i_{n}} Q_{i_{1},i_{2},... i_{n}}\sigma_{i1} \otimes \sigma_{i2}... \sigma_{in}$ we require that

$\langle \psi \vert \rho \vert \psi \rangle \geq 0$ and so $\sum Q_{i_{1},i_{2},... i_{n}}t_{i_{1},i_{2},... i_{n}}\geq 0$ which defines a hyperplane.

The problem is you have a hyperplane for every $\psi$ so that requiring $t$ to satisfy every inequality one of the infinite hyperplanes is impossible to check by brute force. If you want sufficient conditions for positivity of $\rho$ I suspect you have to calculate eigenvalues.

This post has been migrated from (A51.SE)
answered Nov 25, 2011 by (405 points)
+1 from me. I use it a lot too, but couldn't think of anything interesting to say!

This post has been migrated from (A51.SE)
+ 1 like - 0 dislike

A good starting point, I have checked just chapter 4 but there is more, is

R. R. Puri, Mathematical Methods of Quantum Optics, Springer (2001) (see here).

This post has been migrated from (A51.SE)
answered Nov 24, 2011 by (345 points)
Thank you, Jon. In the meantime I found papers about discrete phase space, where $\hat{\sigma}_{\vec{i}}$ is a shift operator (Gibbons, Hoffman, Wootters [quant-ph/0401155](http://arxiv.org/abs/quant-ph/0401155), Paz, Roncaglia, Saraceno [quant-ph/0410117](http://arxiv.org/abs/quant-ph/0410117) and Sec 4.2 of Chris Ferrie's [1010.2701](http://arxiv.org/abs/1010.2701)).

This post has been migrated from (A51.SE)
+ 1 like - 0 dislike

Claudio Altafini studies precisely this subject, in Tensor of coherences parameterization of multiqubit density operators for entanglement characterization and some follow-ups.

This post has been migrated from (A51.SE)
answered Nov 25, 2011 by (270 points)

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar\varnothing$sicsOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.