• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,047 questions , 2,200 unanswered
5,345 answers , 22,709 comments
1,470 users with positive rep
816 active unimported users
More ...

  Operator norm directly from phase space representation of photonic quantum operator

+ 7 like - 0 dislike

I'm interested in calculating the operator norm of a Hermitian operator, say $B$, acting on the Hilbert space of square integrable functions. The context is I have an optical system in all its infinite dimensional glory. To be clear, by operator norm I mean the largest eigenvalue, or $||B||_{\infty}=\sup \{ \langle \psi \vert B \vert \psi \rangle | \langle \psi \vert \psi \rangle =1 \}$.

I have a neat expression for $B$ in terms of its Characteristic function / Wigner function. My question is whether anyone knows a neat and easy way of calculating the operator norm within the phase space picture. Of course, I could truncate the operator to small Fock numbers (assuming that this is a good approximation), work out the matrix in the Fock basis and crunch the numbers. However, I'm just curious whether there is a more elegant solution. I have in mind such equalities as $tr ( A ) = \int W_{A}(r) dr $ and $tr ( A^{\dagger} B ) = \pi \int W_{A}(r)W_{B}(r)dr$, which give a useful correspondence between Wigner functions and the operators themselves.... are these any such expressions for norms?

Being pessimistic I guess the answer might simply be NO! However, I thought it would be worth consulting the collective wisdom of TPSE.

This post has been migrated from (A51.SE)
asked Nov 15, 2011 in Theoretical Physics by Earl (405 points) [ no revision ]
For sure you have $||B||_{\infty} \leq \pi \ \sup_{r} |W_B(r)|$.

This post has been migrated from (A51.SE)
@PiotrMigdal I did actually spot that bound myself after I posted, but I would want something much tighter. e.g. tight enough to give the right answer for a thermal Gaussian.

This post has been migrated from (A51.SE)

3 Answers

+ 6 like - 0 dislike

It is not an complete answer, but (hopefully) it may help:
$$\text{tr} \left( A B \right) = \pi \int W_A(r) W_B(r) dr = \pi \int P_A(r) Q_B(r) dr,$$ where $A$ and $B$ are self-adjoint operators, $r=(p,q)$ is a point of the phase space, $W(r)$ is a Winger function, $P(r)$ - Glauber-Sudarshan P-representation and $Q(r)$ - a Husimi Q representation.

The second equality holds, as $Q(r)$ is a Gaussian-smeared $W(r)$, and $P(r)$ is a Gaussian-sharpened $W(r)$ (to see it explicitly, use the convolution theorem).

Then you can use advantages of each of the mentioned representations:

  • $P_A(r)$: is sometimes easier to handle than its Wigner counterpart,
  • $Q_B(r)$: is easily obtainable numerically (or sometimes - even analytically) from $W_B(r)$; for a non-negatively definite operator it is nonnegative, i.e. $Q_B(r) \geq 0$.

In particular for $P_A(r)\geq 0$ and $Q_B(r)\geq 0$ one gets a bound $$ \int P_A(r) Q_B(r) dr \leq \left( \sup_r\ Q_b(r) \right) \int P_A(r)dr = \sup_r\ Q_b(r).$$ In other words, when one restricts to finding maximum over a mixture of coherent states, then $\pi\ \sup_r\ Q_b(r)$ is the upper bound, which is tight.

However, the state achieving maximum need not to be coherent, so in general one gets $$||B||_\infty \geq \pi\ \sup_\alpha \langle \alpha | B | \alpha \rangle = \pi \ \sup_r\ Q_B(r).$$

Additionally, for some applications it may help that: $$\sup_r\ Q_B(r)\leq \sup_r\ W_B(r)\leq \sup_r\ |W_B(r)|.$$

This post has been migrated from (A51.SE)
answered Nov 15, 2011 by Piotr Migdal (1,260 points) [ no revision ]
Thanks for your great answer. I didn't think to use the Husimi Q representation, but it seems to give quite a good bound! Though the bound is not always tight, it is tight for some important cases. For example, your bound would be tight for a thermal Gaussian, and displacements of a thermal Gaussian. I think this might be tight enough to be useful to me.

This post has been migrated from (A51.SE)
Actually, I'm not quite sure I understand why this is an upper bound on $||B||_{\infty}$ and not lower, and why there isn't a $\pi$ involved. So, via wikipedia, we have a $Q$ function: $Q_{B}(\alpha) = \frac{1}{\pi} \langle \alpha \vert B \vert \alpha \rangle $. Taking the sup gives, $\sup_{\alpha} Q_{B} ( \alpha ) = \sup_{\alpha} \langle \alpha \vert B \vert \alpha \rangle / \pi \leq \sup_{\psi} \langle \psi \vert B \vert \psi \rangle / \pi = ||B||_{\infty} / \pi$. Have I misunderstood something here?

This post has been migrated from (A51.SE)
@Earl: Haste makes waste - sorry for my omission. I lost $\pi$ and it wasn't on purpose. When it comes to the inequality (this one with $||B||_\infty$) - now I see it is not right. I wanted to use $\int P(r) Q(r) dr \leq \int P(r) (\sup_{R} Q(R)) dr$ but I've forgotten that $P(r)$ is not positive. I am fixing my post in a sec.

This post has been migrated from (A51.SE)
Cool. But maybe we can also have both bounds such that $\pi \sup_{r} |Q_{B}(r)| \leq ||B||_{\infty} \leq \pi \sup_{r} |P_{B}(r)|$. For the following reason. $||B||_{\infty} = \pi | \sup_{\psi} \int P_{B}(r) Q_{\psi}(r) dr | \leq \sup_{\psi} \int | P_{B}(r) |.| Q_{\psi}(r) | dr $, where $Q_{\psi}$ is for some $\vert \psi \rangle$. Which is simply $||B||_{\infty} \leq \pi (\sup_{r}|P(r)|)(\int |Q_{\psi}|(r))$, but since Q is positive and integrates to 1, we have $||B||_{\infty}\leq \pi \sup_{r}|P(r)| $. This gives the other bound, which happens to be the one I prefer to have.

This post has been migrated from (A51.SE)
Ignore my last comment, as I think the Wigner function gives a better upper bound than the P-function.

This post has been migrated from (A51.SE)
+ 2 like - 0 dislike

In the case when $B$ is a compact operator, a limiting process can be applied to get the operator's norm to any arbitrarily small precision. This process is a Hilbert space generalization of the linear algebra relation for a Hermitian matrix $A$.

$ ||A||_{\infty} = \lim_{n\rightarrow \infty}|tr(A^n)|^{\frac{1}{n}}$.

For the data given in the question the operator composition is to be performed by means of the star product:

$ W_{AB}(r) =(W_A \star W_B)(r) =\int W_A(r_1)W_B(r_2) k(r, r_1, r_2) dr$

Thus one needs to know the star product kernel $k$. (Of course, in the ordinary phase space case, the star product is the Moyal star product).

Thus formally for the operator case:

$ ||B||_{\infty} = \lim_{n\rightarrow \infty}|tr(\star^{n} B)|^{\frac{1}{n}}$.

The limit exists when $B$ is compact.

This post has been migrated from (A51.SE)
answered Nov 16, 2011 by David Bar Moshe (4,355 points) [ no revision ]
+ 1 like - 0 dislike

There is an obvious property of the Wigner function when one takes the limit $p\rightarrow\infty$. By the Riemann's lemma, the Wigner function is expected to go to zero in this limit but it does driven by the largest eigenvalue. Your question can be stated in the following way. The Wigner function for a generic operator $A$ can be defined as

$$ W_A(x,p)=\frac{1}{2\pi\hbar}\int_{-\infty}^{+\infty}dy e^{-\frac{i}{\hbar}py}\langle x-y|A|x+y\rangle. $$

Now, assume that you have diagonalized $A$ so that $A|a_n\rangle=a_n|a_n\rangle$, you can write immediately

$$W_A(x,p)=\frac{1}{2\pi\hbar}\sum_n a_n\int_{-\infty}^{+\infty}dy e^{-\frac{i}{\hbar}py}\phi_n^*(x-y)\phi_n(x+y)=\frac{1}{2\pi\hbar}\sum_n a_n W_n(x,p) $$

being $\phi_n(x)=\langle a_n|x\rangle$. Of course, if the spectrum of $A$ will not run to infinity, taking the limit of increasing $p$ should grant the work done. This can also be argued from the unbounded case of the Hamiltonian of the harmonic oscillator. In this case you will get

$$W_A(x,p)=\sum_n E_n W_n^{H.O.}(x,p)$$

being now

$$ W_n^{H.O.}(x,p)=\frac{(-1)^n}{\pi\hbar}e^{-\frac{p^2}{\hbar^2\kappa^2}-\kappa^2x^2}L_n\left(2\frac{p^2}{\hbar^2\kappa^2}+2\kappa^2x^2\right)$$

and $L_n(x)$ the Laguerre polynomials and $\kappa^2=m\omega/\hbar$. In the limit $p\rightarrow\infty$, being $x$ fixed, the Laguerre polynomial will give the driving contribution $p^n$. In this particular case, it is the "energy" of the oscillator to drive to zero with the power of $n$.

This post has been migrated from (A51.SE)
answered Nov 16, 2011 by JonLester (345 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights