Estimate interaction time in Relativistic quantum scattering

+ 1 like - 0 dislike
409 views

Consider a scattering collision between a relativistic electron and a Hydrogen atom, which is assumed to be in the ground state. Assume that the electron velocity is comparable to the speed of light $v \thicksim c$. For the discussion purposes, denote by $D$ the diameter of a ball, within which the probability to find the atomic-electron (in the ground state) is at least 0.99.

What is needed is some reasonable higher bound on the time duration of the interaction, during collision between the electron and the Hydrogen atom.
Intuitively the interaction time can be estimated as
$\Delta t\sim \mu\frac{D}{v}$
where $\mu$  is some reasonable coefficient in the range of $0.333 < \mu < 3$.

Apparently just invoking classical mechanics won't do, since the objects are described by quantum wavefunctions and their motion by special relativity.
Yet some justified argument must exist to estimate and justify that, $\it{without}$ invoking the whole formalism of relativistic quantum scattering, which is extremely heavy.

From the principles of wavefunctions-overlap integrals, the fundamental definition of velocity the estimate above seems true.
Looking for better justified argumentation and estimation for the estimate above.

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOverflo$\varnothing$Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). Please complete the anti-spam verification