Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,047 questions , 2,200 unanswered
5,345 answers , 22,709 comments
1,470 users with positive rep
816 active unimported users
More ...

  Allowed states vis-a-vis allowed dynamics in generalized probabilistic theories (GPTs)

+ 6 like - 0 dislike
485 views

In his work on information processing in GPTs http://arxiv.org/abs/quant-ph/0508211 Barrett speculates that the trade-off between allowed states and the allowed dynamics in a GPT is optimal in quantum theory, allowing for information processing capabilities not all of which occur in either the generalized no-signalling theory (GNST) or the generalized local theory (GLT). I'm wondering if this optimality is related to the symmetry of the associated polytope (of allowed states) in the theory, and in what exact manner. Any ideas?

This post has been migrated from (A51.SE)
asked Nov 8, 2011 in Theoretical Physics by Ravi Kunjwal (45 points) [ no revision ]
retagged Mar 7, 2014 by dimension10

1 Answer

+ 8 like - 0 dislike

There has indeed been some work on relating the geometry of the state space to the limitations of the theory. First, work relating the local state space to the non-locality present in a theory developed by Janotta et al. They consider the local state space to be a regular polygon. For a large number of sides, the non-locality tends towards Tsirelson's bound. That is, in the infinite limit, the state space is quantum and so, self-dual. The issue of self-duality of state space has been explored and means that the space of effects is isomorphic to the state space.

Relating this to the optimality of quantum state space one can think about reversible computation. In order to have a model of quantum computing that encompasses the circuit model and more general state spaces, one can develop reversible computing for all possible GPTs. Firstly, reversible computations in box-world are trivial as shown by Gross et al. This means that reversible dynamics for box-world is limited to permutations and relabelling of data. If we want reversible dynamics on a less trivial level, e.g. the power to map from one bit to another bit, then this leads to self-duality as shown by Mueller and Ududec. Since the self-duality in the previous paragraph indicates a trade-off in non-locality, they also speculate that this reversible computation limits non-locality. So they connect a computational principle to the structure of the state space, very much in the spirit of Barrett's paper.

This post has been migrated from (A51.SE)
answered Nov 8, 2011 by Matty Hoban (435 points) [ no revision ]
Thanks Matty! That helps. I'm only beginning to study these questions, and the papers you pointed out are quite pertinent.

This post has been migrated from (A51.SE)
http://arxiv.org/abs/0805.3553 is also a paper that relates GPTs to teleportation. The notion of duality and the structure of the state space becomes relevant if we want to teleport states.

This post has been migrated from (A51.SE)

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOv$\varnothing$rflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...