For instance, given a theory and a formulation thereof in terms of a principal bundle with a Lie group $G$ as its fiber and spacetime as its base manifold, would a principle bundle with the Poincaré group as its fiber and $\mathcal{M}$ as its base manifold, where $\mathcal{M}$ is a manifold the group of whose isometries is $G$, lead to an equivalent formulation? Why? Why not?

On a related note, can any Lie group be realized as the group of isometries of some manifold?

This post has been migrated from (A51.SE)