• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,064 questions , 2,215 unanswered
5,347 answers , 22,734 comments
1,470 users with positive rep
818 active unimported users
More ...

  How to understand $T^2=(-1)^{N_f}$ in terms of operator matrices on Hilbert space

+ 1 like - 0 dislike

For a time reversal symmetry operator $\hat{T}$, we have $$\hat{T}^2=(-1)^{N_f}$$ for a fermionic (electronic) system. How do we understand $\hat{T}^2=(-1)^{N_f}$ in terms of operator matrices on the Hilbert space? $N_f$ is the number of fermions in the system.

How could we write down the expression of $\hat{T}$ in the complex fermion or Majorana fermion basese?

Naively, we have $$\hat{T}= i \sigma_y K$$ for acting on a single 2-component spin-(1/2) system, but how can the complex conjugation $K$ be realized in terms of $2 \times 2$ matrix (since a spin-(1/2) object takes a 2-dimensional Hilbert space)? Or do we need to enlarge the Hilbert space to $4 \times 4$ matrix in order to realize the complex conjugation $K$?

For a many-body electron system, how do we write down $\hat{T}$ and $\hat{T}^2=(-1)^{N_f}$ in terms of operator matrices on the $N$-dimensional Hilbert space?

p.s. Please do not give Refs. Please you should explain the answer by explicit results. Thanks in advance,

This post imported from StackExchange Physics at 2020-10-30 22:41 (UTC), posted by SE-user annie marie heart
asked Oct 24, 2017 in Theoretical Physics by annie marie heart (1,205 points) [ no revision ]
You can’t write $K$ as a matrix because it’s not a linear operator; the one-dimensional analogue of this is asking for a complex number $w$ so that $wz = \bar{z}$, which is impossible.

This post imported from StackExchange Physics at 2020-10-30 22:41 (UTC), posted by SE-user knzhou

1 Answer

+ 2 like - 0 dislike

This does not exactly answer your question but I think you want to justify $T^2=(-1)^N$

You best understand it by the action of Time-reversal operators on second quantized fermionic field operators. They act like

\begin{align} \mathcal{T}\Psi_{\alpha}(\mathbf{k})\mathcal{T}^{-1} & =\sum_{\alpha'}(U^{\dagger}_{\operatorname{T}})_{\alpha,\alpha'}\Psi_{\alpha'}(-\mathbf{k}),\label{eq:-29}\\ \mathcal{T}\Psi_{\alpha}^{\dagger}(\mathbf{k})\mathcal{T}^{-1} & =\sum_{\alpha'}\Psi^{\dagger}_{\alpha'}(-\mathbf{k})(U_{\operatorname{T}})_{\alpha',\alpha},\label{eq: timereversal} \end{align}

where $\alpha$ is some degree of freedom and $U_T$ is a unitary matrix. For example if I have a many-body state with $N$ electrons it can be given by $$|N\rangle=\prod_{i}^{N}\Psi^{\dagger}_{\alpha}(k_i)|\mathrm{vac}\rangle,$$ Now it is clear that $$\mathcal{T}^2|N\rangle=(U_T^2)^N|N\rangle, $$ finally if your system consists of pin one half particles $U_T$ squares to minus one.

This post imported from StackExchange Physics at 2020-10-30 22:41 (UTC), posted by SE-user physshyp
answered Oct 26, 2017 by physshyp (20 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights