• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,054 questions , 2,207 unanswered
5,347 answers , 22,720 comments
1,470 users with positive rep
818 active unimported users
More ...

  How to operationally realize the following type of equations of motion?

+ 0 like - 0 dislike

It is well known that for a free particle, described by $H=\hat{p}^2/2m$,  
$\hat{p}_{x}(t)= constant$ (similarly for other components of momentum). Meanwhile, $\hat{x}(t)$ is not a constant, being proportional to  $\hat{p}_{x}(0)t/m$ (and similarly for other components) .

An operational interpretation of this result could be this: We prepare an ensemble of setups, in each of which we put a set of position detectors along a direction which we call the $x$-axis, at a given $t>0$, and send in a free particle of mass $m$ from a source at origin. We observe a frequency distribution in the measured position observable, consistent with the expectation value of position that we calculate. Meanwhile,  we could infer the momentum that the particle has in each position detection event from the relative position of the position detector from the source at origin and the time taken to arrive. Again, we find a result consistent with our calculation of the expectation value for momentum. I.e, we see a constant value for the $x$-component of the momentum, from each $x$-component position detection events.

Now, I was working on a problem-(The problem I considered in it's 1-d version is H=xp+V(x). The first term is the Von Neumann position measurement interaction term, which he mentions in the final chapter of his well known quantum book. The x is the position observable corresponding to the system and the p is the momentum observable corresponding to the probe. V(x) is some potential that I considered to affect only the system. I assumed x and p to commute as they correspond to different particles. Solving the Heisenberg equation for this setup gives the desired result. I neglected the kinetic energy terms.) -that had a Hamiltonian which results in an equations of motion that was roughly the reverse of a free particle in the sense that  $\hat{x}(t)=constant$(and has a small variance) and $\hat{p}_{x}$ is time dependent. This equations of motion seem to mean that the particle has a sharply localized wave packet in position space for all time, but the momentum shows a large (I am being rough here) uncertainty/distribution in its measured values. I was looking for a simple experiment that could instantiate this result, but could not find a satisfactory one. So any help is well appreciated.

I initially did think of the single-slit experiment, where we have have a narrowing of the position space wave packet as a result of confining the particle to the single narrow slit. We know that the state of the particle consequently acquires a large uncertainty in momentum that could be verified by putting a screen in front of the single slit. This supposed operational example for the equations of motion that I got does not appear satisfactory because,  it appears that one cannot claim that the uncertainty in position for the wave-function just before the detection in the screen,  was the same as the uncertainty in position (which was very small in magnitude) while the particle was confined to the narrow slit. i.e  $\hat{x}(t)=constant$   is not strictly satisfied.
Another operational method I thought of is to do a continuous position measurement that indeed keeps $\hat{x}(t)=constant$. But then, how can we measure the momentum of a particle that is for all time at a given spot (and importantly, find a large momentum uncertainty)?

asked Mar 17, 2020 in Experimental Physics by GlaDoS1996 (0 points) [ revision history ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights