# Partial trace of matrix product state

+ 0 like - 0 dislike
313 views

I have come accross a formula that puzzles me a bit in the proof of lemma 23 (page 32) of [this paper].

The authors start from a (translationally-invariant) matrix product state:
$$\lvert\psi\rangle := \sum_{i_1, \ldots, i_n}\textrm{tr}(A_{i_1} \ldots A_{i_n})\lvert i_1 \ldots i_n\rangle$$

where the $A_i$ are matrices of dimension $D$ satisfying $\sum_{i}A_i^{\dagger}A_i = \sum_{i}A_iA_i^{\dagger} = \mathbf{1}_{D \times D}$ (that is, they constitute Kraus operators for a unital channel). Then, they claim that the reduced state of the first $l$ qudits looks like:

$$\rho_l = \sum_{i_1, \ldots, i_l}\textrm{tr}\left(A_{i_1} \ldots A_{i_l}\frac{\mathbf{1}_{D \times D}}{D}A_{j_1}^{\dagger} \ldots A_{j_l}^{\dagger}\right)\lvert i_1 \rangle\langle j_1\rvert \otimes \ldots \otimes \lvert i_l \rangle\langle j_l \rvert$$

Yet, the first expression that looks obvious to me would rather be:
$$\rho_l = \sum_{i_1, \ldots, i_l}\left(\sum_{i_{n + 1}, \ldots, i_n}\textrm{tr}\left(A_{i_1}\ldots A_{i_{l}}A_{i_{l + 1}}\ldots A_{i_n}\right)\textrm{tr}\left(A_{i_n}^{\dagger}\ldots A_{i_{l + 1}}^{\dagger}A_{i_l}^{\dagger}\ldots A_{i_1}^{\dagger}\right)\right)\lvert i_1 \rangle\langle j_1\rvert \otimes \ldots \otimes \lvert i_l \rangle\langle j_l \rvert$$

It looks as if by some magic the authors converted the sum of product of traces above to the trace of a product! Any idea where that would come from? At first, I thought it had to do with the $A$ being randomized (see paragraph on top of page 32), but by giving it a closer look, it seems the statements of lemma 23 do not include an expectation value with respect to the Haar measure, as opposed e.g to lemma 24, so I am not sure what to think.

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsO$\varnothing$erflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.