# Understanding the statement "orbifold theories are QFTs with finite gauge group"

+ 2 like - 0 dislike
42 views

I'd like to understand the equivalence of orbifold theories in string theory and (2D worldsheet) QFTs with finite gauge group, using the path integral.

Suppose my action is $$S= \frac{1}{2\pi \alpha'} \int d^2\sigma (\partial_i X^\mu \partial^i X_\mu)$$ and the $$X^\mu(\sigma)$$ are invariant under some finite group action $$\Gamma$$. To construct the orbifold theory on a Riemann surface $$\Sigma$$, I want to take the path integral over the untwisted and twisted sectors, i.e. I want to average over all boundary conditions on $$X^\mu$$ in which $$X^\mu$$ is periodic up to $$\Gamma$$-action.

Now, on the other hand, if I want to compute the path integral of a QFT with a finite gauge group, I would "gauge-fix" and then compute the path integral.

How can I see that the two approaches are the same?

This post imported from StackExchange Physics at 2019-09-16 20:25 (UTC), posted by SE-user Dwagg
 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysi$\varnothing$sOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.