# A Question About 4-Spinor Contractions

+ 0 like - 0 dislike
2140 views

Let $f_{abc}$ be a constant which is totally anti-symmetric with respect to indices $a$, $b$ and $c$. Let $\psi^{a}$, $\psi^{b}$, $\psi^{c}$ and $\epsilon$ be Grassmann-valued Majorana fermions. How  to prove the following famous identity?

$$f_{abc}\left(\bar{\epsilon}\gamma_{\mu}\psi^{a}\right)\left(\bar{\psi}^{b}\gamma^{\mu}\psi^{c}\right)=0 \tag{1}$$

I am trying to use the Fierz identity show the following equation:

$$f_{abc}\left(\bar{\epsilon}\gamma_{\mu}\psi^{a}\right)\left(\bar{\psi}^{b}\gamma^{\mu}\psi^{c}\right)=f_{abc}\left(\bar{\epsilon}\gamma_{\mu}\psi^{b}\right)\left(\bar{\psi}^{a}\gamma^{\mu}\psi^{c}\right). \tag{2}$$

Then, using cyclic permutation symmetry of $f_{abc}$, one has (1).

My calculation goes as follows, but I cannot find where I made mistakes.

$$f_{abc}\left(\bar{\epsilon}\gamma_{\mu}\psi^{a}\right)\left(\bar{\psi}^{b}\gamma^{\mu}\psi^{c}\right)=f_{abc}\bar{\epsilon}\gamma_{\mu}\left[(\psi^{a}\bar{\psi}^{b})(\gamma^{\mu}\psi^{c})\right] \tag{3}$$

The Fierz identity is

$$(\lambda\bar{\rho})\chi=-\frac{1}{4}(\bar{\lambda}\chi)\rho-\frac{1}{4}(\bar{\lambda}\gamma_{\mu}\chi)(\gamma^{\mu}\rho)-\frac{1}{4}(\bar{\lambda}\gamma_{5}\chi)(\gamma_{5}\rho)+\frac{1}{4}(\bar{\lambda}\gamma_{\mu}\gamma_{5}\chi)(\gamma^{\mu}\gamma_{5}\rho)+\frac{1}{8}(\bar{\lambda}\gamma_{\mu\nu}\chi)(\gamma^{\mu\nu}\rho)$$

where $\lambda$, $\rho$, $\chi$ are three arbitrary Grassmann-valued Majorana $4$-spinors.

Using the above identity, one has

\begin{gather}
f_{abc}\bar{\epsilon}\gamma_{\mu}\left[(\psi^{a}\bar{\psi}^{b})(\gamma^{\mu}\psi^{c})\right] \\
=f_{abc}\bar{\epsilon}\gamma_{\mu}\left[-\frac{1}{4}(\bar{\psi}^{a}\gamma^{\mu}\psi^{c})\psi^{b}-\frac{1}{4}(\bar{\psi}^{a}\gamma^{\rho}\gamma^{\mu}\psi^{c})(\gamma_{\rho}\psi^{b})-\frac{1}{4}(\psi^{a}\gamma_{5}\gamma^{\mu}\psi^{c})(\gamma_{5}\psi^{b})+\frac{1}{4}(\bar{\psi}^{a}\gamma^{\rho}\gamma_{5}\gamma^{\mu}\psi^{c})(\gamma_{\rho}\gamma_{5}\psi^{b})+\frac{1}{8}(\bar{\psi}^{a}\gamma^{\rho\sigma}\gamma^{\mu}\psi^{c})(\gamma_{\rho\sigma}\psi^{b})\right] \tag{4.1}
\end{gather}

Since

\begin{align}
&(\bar{\psi}^{a}\gamma^{\rho}\gamma^{\mu}\psi^{c})=(\bar{\psi}^{c}\gamma^{\rho}\gamma^{\mu}\psi^{a}), \\
&(\bar{\psi}^{a}\gamma_{5}\gamma^{\mu}\psi^{c})=(\bar{\psi}^{c}\gamma_{5}\gamma^{\mu}\psi^{a}),
\end{align}

The second and third terms in (4.1) vanish. One ends up with

$$f_{abc}\bar{\epsilon}\gamma_{\mu}\left[(\psi^{a}\bar{\psi}^{b})(\gamma^{\mu}\psi^{c})\right]=f_{abc}\bar{\epsilon}\gamma_{\mu}\left[-\frac{1}{4}(\bar{\psi}^{a}\gamma^{\mu}\psi^{c})\psi^{b}+\frac{1}{4}(\bar{\psi}^{a}\gamma^{\rho}\gamma_{5}\gamma^{\mu}\psi^{c})(\gamma_{\rho}\gamma_{5}\psi^{b})+\frac{1}{8}(\bar{\psi}^{a}\gamma^{\rho\sigma}\gamma^{\mu}\psi^{c})(\gamma_{\rho\sigma}\psi^{b})\right] \tag{4.2}$$

The last term in the above expression can be simplified by using the identity.

$$\gamma^{\rho\sigma}\gamma^{\mu}=\gamma^{\rho\sigma\mu}+\eta^{\sigma\mu}\gamma^{\rho}-\eta^{\rho\mu}\gamma^{\sigma}=\epsilon^{\rho\sigma\mu\lambda}\gamma_{\lambda}\gamma_{5}++\eta^{\sigma\mu}\gamma^{\rho}-\eta^{\rho\mu}\gamma^{\sigma} \tag{5}$$

Thus,

$$\frac{1}{8}(\bar{\psi}^{a}\gamma^{\rho\sigma}\gamma^{\mu}\psi^{c})(\gamma_{\rho\sigma}\psi^{b})=\frac{1}{8}\left[\bar{\psi}^{a}\left(\epsilon^{\rho\sigma\mu\lambda}\gamma_{\lambda}\gamma_{5}+\eta^{\sigma\mu}\gamma^{\rho}-\eta^{\rho\mu}\gamma^{\sigma}\right)\psi^{c}\right]\gamma_{\rho\sigma}\psi^{b}=\frac{1}{8}\epsilon^{\rho\sigma\mu\lambda}\left(\bar{\psi}^{a}\gamma_{\lambda}\gamma_{5}\psi^{c}\right)\gamma_{\rho\sigma}\psi^{b}+\frac{1}{8}\left(\bar{\psi}^{a}\gamma^{\rho}\psi^{c}\right)\gamma_{\rho\sigma}\eta^{\sigma\mu}\psi^{b}-\frac{1}{8}\left(\bar{\psi}^{a}\gamma^{\sigma}\psi^{c}\right)\gamma_{\rho\sigma}\eta^{\rho\mu}\psi^{b}.$$

Thus,

\begin{gather}
\frac{1}{8}\bar{\epsilon}\gamma_{\mu}\left(\bar{\psi}^{a}\gamma^{\rho\sigma}\gamma^{\mu}\psi^{c}\right)\gamma_{\rho\sigma}\psi^{b}=\frac{1}{8}\left(\bar{\epsilon}\gamma_{\mu}\gamma_{\rho\sigma}\psi^{b}\right)\left(\bar{\psi}^{a}\gamma^{\rho\sigma}\gamma^{\mu}\psi^{c}\right) \\
=\frac{1}{8}\epsilon^{\rho\sigma\mu\lambda}\left(\bar{\epsilon}\gamma_{\mu}\gamma_{\rho\sigma}\psi^{b}\right)\left(\bar{\psi}^{a}\gamma_{\lambda}\gamma_{5}\psi^{c}\right)+\frac{1}{8}\left(\bar{\epsilon}\gamma^{\sigma}\gamma_{\rho\sigma}\psi^{b}\right)\left(\bar{\psi}^{a}\gamma^{\rho}\psi^{c}\right)-\frac{1}{8}\left(\bar{\epsilon}\gamma^{\rho}\gamma_{\rho\sigma}\psi^{b}\right)\left(\bar{\psi}^{a}\gamma^{\sigma}\psi^{c}\right)
\end{gather}

Since $(\bar{\psi}^{a}\gamma_{\lambda}\gamma_{5}\psi^{c})=(\bar{\psi}^{c}\gamma_{\lambda}\gamma_{5}\psi^{a})$, the first term in the above line does not contribute. The last two terms are equal due to the anti-symmetry of $\gamma_{\rho\sigma}$.

From (5), one finds

$$\gamma^{\sigma}\gamma_{\rho\sigma}=\eta^{\sigma\alpha}\gamma_{\alpha}\gamma_{\rho\sigma}=-3\gamma_{\rho}$$

Thus,

$$\frac{1}{8}\bar{\epsilon}\gamma_{\mu}\left(\bar{\psi}^{a}\gamma^{\rho\sigma}\gamma^{\mu}\psi^{c}\right)\gamma_{\rho\sigma}\psi^{b}=\frac{1}{8}\epsilon^{\rho\sigma\mu\lambda}\left(\bar{\epsilon}\gamma_{\mu}\gamma_{\rho\sigma}\psi^{b}\right)\left(\bar{\psi}^{a}\gamma_{\lambda}\gamma_{5}\psi^{c}\right)-\frac{3}{4}\left(\bar{\psi}^{a}\gamma^{\rho}\psi^{c}\right)\left(\bar{\epsilon}\gamma_{\rho}\psi^{b}\right)$$

Plugging the above result into (4.2), one finds

\begin{gather}
f_{abc}\bar{\epsilon}\gamma_{\mu}\left[(\psi^{a}\bar{\psi}^{b})(\gamma^{\mu}\psi^{c})\right] \\
=f_{abc}\bar{\epsilon}\gamma_{\mu}\left[-\frac{1}{4}(\bar{\psi}^{a}\gamma^{\mu}\psi^{c})\psi^{b}+\frac{1}{4}(\bar{\psi}^{a}\gamma^{\rho}\gamma_{5}\gamma^{\mu}\psi^{c})(\gamma_{\rho}\gamma_{5}\psi^{b})+\frac{1}{8}(\bar{\psi}^{a}\gamma^{\rho\sigma}\gamma^{\mu}\psi^{c})(\gamma_{\rho\sigma}\psi^{b})\right] \\
=f_{abc}\bar{\epsilon}\gamma_{\mu}\left[-\frac{1}{4}(\bar{\psi}^{a}\gamma^{\mu}\psi^{c})\psi^{b}+\frac{1}{4}(\bar{\psi}^{a}\gamma^{\rho}\gamma_{5}\gamma^{\mu}\psi^{c})(\gamma_{\rho}\gamma_{5}\psi^{b})\right]-\frac{3}{4}f_{abc}\left(\bar{\psi}^{a}\gamma^{\rho}\psi^{c}\right)\left(\bar{\epsilon}\gamma_{\rho}\psi^{b}\right)+\require{cancel}\bcancel{\frac{1}{8}f_{abc}\epsilon^{\rho\sigma\mu\lambda}\left(\bar{\epsilon}\gamma_{\mu}\gamma_{\rho\sigma}\psi^{b}\right)\left(\bar{\psi}^{a}\gamma_{\lambda}\gamma_{5}\psi^{c}\right)} \\
=-f_{abc}\left(\bar{\psi}^{a}\gamma^{\mu}\psi^{c}\right)\left(\bar{\epsilon}\gamma_{\mu}\psi^{b}\right)-\frac{1}{4}f_{abc}\left(\bar{\psi}^{a}\gamma^{\rho}\gamma^{\mu}\gamma_{5}\psi^{c}\right)\left(\bar{\epsilon}\gamma_{\mu}\gamma_{\rho}\gamma_{5}\psi^{b}\right). \tag{6}
\end{gather}

For the last term, one can use the identity

$$\bar{\psi}^{a}\gamma^{\rho}\gamma^{\mu}\gamma_{5}\psi^{c}=-\bar{\psi}^{c}\gamma_{5}\gamma^{\mu}\gamma^{\rho}\psi^{a}=-\bar{\psi}^{c}\left(2\eta^{\mu\rho}\gamma_{5}-\gamma^{\rho}\gamma^{\mu}\gamma_{5}\right)\psi^{a},$$

which implies

$$\bar{\psi}^{a}\gamma^{\rho}\gamma^{\mu}\gamma_{5}\psi^{c}-\bar{\psi}^{c}\gamma^{\rho}\gamma^{\mu}\gamma_{5}\psi^{a}=-2\eta^{\mu\rho}\bar{\psi}^{c}\gamma_{5}\psi^{a}. \tag{7}$$

Thus,

\begin{gather}
f_{abc}\bar{\epsilon}\gamma_{\mu}\left[(\psi^{a}\bar{\psi}^{b})(\gamma^{\mu}\psi^{c})\right] \\
=-f_{abc}\left(\bar{\psi}^{a}\gamma^{\mu}\psi^{c}\right)\left(\bar{\epsilon}\gamma_{\mu}\psi^{b}\right)-\frac{1}{4}f_{abc}\left(\bar{\psi}^{a}\gamma^{\rho}\gamma^{\mu}\gamma_{5}\psi^{c}\right)\left(\bar{\epsilon}\gamma_{\mu}\gamma_{\rho}\gamma_{5}\psi^{b}\right) \\
=-f_{abc}\left(\bar{\psi}^{a}\gamma^{\mu}\psi^{c}\right)\left(\bar{\epsilon}\gamma_{\mu}\psi^{b}\right)-\frac{1}{8}\left[f_{abc}\left(\bar{\psi}^{a}\gamma^{\rho}\gamma^{\mu}\gamma_{5}\psi^{c}\right)+f_{cba}\left(\bar{\psi}^{c}\gamma^{\rho}\gamma^{\mu}\gamma_{5}\psi^{a}\right)\right]\left(\bar{\epsilon}\gamma_{\mu}\gamma_{\rho}\gamma_{5}\psi^{b}\right) \\
=-f_{abc}\left(\bar{\psi}^{a}\gamma^{\mu}\psi^{c}\right)\left(\bar{\epsilon}\gamma_{\mu}\psi^{b}\right)-\frac{1}{8}\left[f_{abc}\left(\bar{\psi}^{a}\gamma^{\rho}\gamma^{\mu}\gamma_{5}\psi^{c}\right)-f_{abc}\left(\bar{\psi}^{c}\gamma^{\rho}\gamma^{\mu}\gamma_{5}\psi^{a}\right)\right]\left(\bar{\epsilon}\gamma_{\mu}\gamma_{\rho}\gamma_{5}\psi^{b}\right) \\
=-f_{abc}\left(\bar{\psi}^{a}\gamma^{\mu}\psi^{c}\right)\left(\bar{\epsilon}\gamma_{\mu}\psi^{b}\right)-\frac{1}{8}f_{abc}\left[-2\eta^{\mu\rho}\bar{\psi}^{c}\gamma_{5}\psi^{a}\right]\left(\bar{\epsilon}\gamma_{\mu}\gamma_{\rho}\gamma_{5}\psi^{b}\right)
\end{gather}

But since $\bar{\psi}^{c}\gamma_{5}\psi^{a}=\bar{\psi}^{a}\gamma_{5}\psi^{c}$, the last term in the above expression vanish. Thus, one ends up with

$$f_{abc}\left(\bar{\epsilon}\gamma_{\mu}\psi^{a}\right)\left(\bar{\psi}^{b}\gamma^{\mu}\psi^{c}\right)=f_{abc}\bar{\epsilon}\gamma_{\mu}\left[(\psi^{a}\bar{\psi}^{b})(\gamma^{\mu}\psi^{c})\right]=-f_{abc}\left(\bar{\psi}^{a}\gamma^{\mu}\psi^{c}\right)\left(\bar{\epsilon}\gamma_{\mu}\psi^{b}\right)=f_{abc}\left(\bar{\psi}^{c}\gamma^{\mu}\psi^{a}\right)\left(\bar{\epsilon}\gamma_{\mu}\psi^{b}\right),$$

which is trivially correct due to the cyclic property of $f_{abc}$.

Other than using the Fierz identity to rearrange the spinors, I cannot find any other way to prove equation (1).

Did I make any mistakes in the above derivations?

If not, how to prove (1)?

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysic$\varnothing$OverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.