Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

178 submissions , 140 unreviewed
4,360 questions , 1,685 unanswered
5,108 answers , 21,716 comments
1,470 users with positive rep
652 active unimported users
More ...

  How can one derive Schwarzian derivative action as low energy effective field theory invariant under global $SL(2,\mathbb{R})$?

+ 4 like - 0 dislike
57 views

In a recent paper (page 47, below eq (4.173)) they make a passing claim that the Schwarzian derivative action can be derived using effective low energy field theory reasoning. I imagine they mean that if I want to construct a least derivative action which is invariant under global $SL(2,\mathbb{R})$ transformations of the coordinates, then I will end up with Schwarzian derivative. I was wondering if this has been worked out anywhere. Also, using the same approach, what are the higher derivative invariants that I can possibly construct as 'less relevant' terms.

This post imported from StackExchange Physics at 2019-05-05 13:10 (UTC), posted by SE-user nGlacTOwnS
asked Dec 3, 2016 in Theoretical Physics by nGlacTOwnS (50 points) [ no revision ]
retagged May 5

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
$\varnothing\hbar$ysicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...